/[svn]/linuxsampler/trunk/src/voice.h
ViewVC logotype

Contents of /linuxsampler/trunk/src/voice.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 40 - (show annotations) (download) (as text)
Tue Mar 30 13:14:58 2004 UTC (20 years, 1 month ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 14347 byte(s)
* added Envelope Generator 2 and 3 (filter cutoff EG and pitch EG) for
  accurate .gig playback
* fixed accuracy of pitch calculation
* changed filter cutoff range to 100Hz..10kHz with exponential curve, this
  value range can also be adjusted on compile time by setting
  FILTER_CUTOFF_MIN and FILTER_CUTOFF_MAX in src/voice.h to desired
  frequencies
* src/lfo.h: lfo is now generalized to a C++ template, which will be useful
  especially when we implement further engines

1 /***************************************************************************
2 * *
3 * LinuxSampler - modular, streaming capable sampler *
4 * *
5 * Copyright (C) 2003 by Benno Senoner and Christian Schoenebeck *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program; if not, write to the Free Software *
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
20 * MA 02111-1307 USA *
21 ***************************************************************************/
22
23 #ifndef __VOICE_H__
24 #define __VOICE_H__
25
26 #include "global.h"
27 #include "rtmath.h"
28 #include "diskthread.h"
29 #include "ringbuffer.h"
30 #include "stream.h"
31 #include "gig.h"
32 #include "eg_vca.h"
33 #include "eg_d.h"
34 #include "rtelmemorypool.h"
35 #include "audiothread.h"
36 #include "filter.h"
37 #include "lfo.h"
38
39 #define USE_LINEAR_INTERPOLATION 1 ///< set to 0 if you prefer cubic interpolation (slower, better quality)
40 #define ENABLE_FILTER 0 ///< if set to 0 then filter (VCF) code is ignored on compile time
41 #define FILTER_UPDATE_PERIOD 64 ///< amount of sample points after which filter parameters (cutoff, resonance) are going to be updated (higher value means less CPU load, but also worse parameter resolution)
42 #define FORCE_FILTER_USAGE 0 ///< if set to 1 then filter is always used, if set to 0 filter is used only in case the instrument file defined one
43 #define FILTER_CUTOFF_MAX 10000.0f ///< maximum cutoff frequency (10kHz)
44 #define FILTER_CUTOFF_MIN 100.0f ///< minimum cutoff frequency (100Hz)
45
46 // Uncomment following line to override external cutoff controller
47 //#define OVERRIDE_FILTER_CUTOFF_CTRL 1 ///< set to an arbitrary MIDI control change controller (e.g. 1 for 'modulation wheel')
48
49 // Uncomment following line to override external resonance controller
50 //#define OVERRIDE_FILTER_RES_CTRL 91 ///< set to an arbitrary MIDI control change controller (e.g. 91 for 'effect 1 depth')
51
52 // Uncomment following line to override filter type
53 //#define OVERRIDE_FILTER_TYPE gig::vcf_type_lowpass ///< either gig::vcf_type_lowpass, gig::vcf_type_bandpass or gig::vcf_type_highpass
54
55
56 /// Reflects a MIDI controller
57 struct midi_ctrl {
58 uint8_t controller; ///< MIDI control change controller number
59 uint8_t value; ///< Current MIDI controller value
60 float fvalue; ///< Transformed / effective value (e.g. volume level or filter cutoff frequency)
61 };
62
63 class Voice {
64 public:
65 // Attributes
66 int MIDIKey; ///< MIDI key number of the key that triggered the voice
67 uint ReleaseVelocity; ///< Reflects the release velocity value if a note-off command arrived for the voice.
68
69 // Static Attributes
70 static DiskThread* pDiskThread; ///< Pointer to the disk thread, to be able to order a disk stream and later to delete the stream again
71 static AudioThread* pEngine; ///< Pointer to the engine, to be able to access the event lists.
72
73 // Methods
74 Voice();
75 ~Voice();
76 void Kill();
77 void Render(uint Samples);
78 void Reset();
79 int Trigger(ModulationSystem::Event* pNoteOnEvent, int PitchBend, gig::Instrument* pInstrument);
80 inline bool IsActive() { return Active; }
81 inline void SetOutputLeft(float* pOutput, uint MaxSamplesPerCycle) { this->pOutputLeft = pOutput; this->MaxSamplesPerCycle = MaxSamplesPerCycle; }
82 inline void SetOutputRight(float* pOutput, uint MaxSamplesPerCycle) { this->pOutputRight = pOutput; this->MaxSamplesPerCycle = MaxSamplesPerCycle; }
83 private:
84 // Types
85 enum playback_state_t {
86 playback_state_ram,
87 playback_state_disk,
88 playback_state_end
89 };
90
91 // Attributes
92 float Volume; ///< Volume level of the voice
93 float* pOutputLeft; ///< Audio output buffer (left channel)
94 float* pOutputRight; ///< Audio output buffer (right channel)
95 uint MaxSamplesPerCycle; ///< Size of each audio output buffer
96 double Pos; ///< Current playback position in sample
97 double PitchBase; ///< Basic pitch depth, stays the same for the whole life time of the voice
98 double PitchBend; ///< Current pitch value of the pitchbend wheel
99 gig::Sample* pSample; ///< Pointer to the sample to be played back
100 gig::Region* pRegion; ///< Pointer to the articulation information of the respective keyboard region of this voice
101 bool Active; ///< If this voice object is currently in usage
102 playback_state_t PlaybackState; ///< When a sample will be triggered, it will be first played from RAM cache and after a couple of sample points it will switch to disk streaming and at the end of a disk stream we have to add null samples, so the interpolator can do it's work correctly
103 bool DiskVoice; ///< If the sample is very short it completely fits into the RAM cache and doesn't need to be streamed from disk, in that case this flag is set to false
104 Stream::reference_t DiskStreamRef; ///< Reference / link to the disk stream
105 unsigned long MaxRAMPos; ///< The upper allowed limit (not actually the end) in the RAM sample cache, after that point it's not safe to chase the interpolator another time over over the current cache position, instead we switch to disk then.
106 bool RAMLoop; ///< If this voice has a loop defined which completely fits into the cached RAM part of the sample, in this case we handle the looping within the voice class, else if the loop is located in the disk stream part, we let the disk stream handle the looping
107 int LoopCyclesLeft; ///< In case there is a RAMLoop and it's not an endless loop; reflects number of loop cycles left to be passed
108 uint Delay; ///< Number of sample points the rendering process of this voice should be delayed (jitter correction), will be set to 0 after the first audio fragment cycle
109 EG_VCA* pEG1; ///< Envelope Generator 1 (Amplification)
110 EG_VCA* pEG2; ///< Envelope Generator 2 (Filter cutoff frequency)
111 EG_D* pEG3; ///< Envelope Generator 3 (Pitch)
112 GigFilter FilterLeft;
113 GigFilter FilterRight;
114 midi_ctrl VCFCutoffCtrl;
115 midi_ctrl VCFResonanceCtrl;
116 int FilterUpdateCounter; ///< Used to update filter parameters all FILTER_UPDATE_PERIOD samples
117 static const float FILTER_CUTOFF_COEFF;
118 LFO<VCAManipulator>* pLFO1; ///< Low Frequency Oscillator 1 (Amplification)
119 LFO<VCFCManipulator>* pLFO2; ///< Low Frequency Oscillator 2 (Filter cutoff frequency)
120 LFO<VCOManipulator>* pLFO3; ///< Low Frequency Oscillator 3 (Pitch)
121 ModulationSystem::Event* pTriggerEvent; ///< First event on the key's list the voice should process (only needed for the first audio fragment in which voice was triggered, after that it will be set to NULL).
122
123 // Static Methods
124 static float CalculateFilterCutoffCoeff();
125
126 // Methods
127 void ProcessEvents(uint Samples);
128 void Interpolate(uint Samples, sample_t* pSrc, uint Skip);
129 void InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip);
130 inline void InterpolateOneStep_Stereo(sample_t* pSrc, int& i, float& effective_volume, float& pitch, float& cutoff, float& resonance) {
131 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
132 float pos_fract = this->Pos - pos_int; // fractional part of position
133 pos_int <<= 1;
134
135 #if ENABLE_FILTER
136 UpdateFilter_Stereo(cutoff + FILTER_CUTOFF_MIN, resonance);
137 #endif // ENABLE_FILTER
138
139 #if USE_LINEAR_INTERPOLATION
140 #if ENABLE_FILTER
141 // left channel
142 this->pOutputLeft[i] += this->FilterLeft.Apply(effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int])));
143 // right channel
144 this->pOutputRight[i++] += this->FilterRight.Apply(effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1])));
145 #else // no filter
146 // left channel
147 this->pOutputLeft[i] += effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+2] - pSrc[pos_int]));
148 // right channel
149 this->pOutputRight[i++] += effective_volume * (pSrc[pos_int+1] + pos_fract * (pSrc[pos_int+3] - pSrc[pos_int+1]));
150 #endif // ENABLE_FILTER
151 #else // polynomial interpolation
152 // calculate left channel
153 float xm1 = pSrc[pos_int];
154 float x0 = pSrc[pos_int+2];
155 float x1 = pSrc[pos_int+4];
156 float x2 = pSrc[pos_int+6];
157 float a = (3 * (x0 - x1) - xm1 + x2) / 2;
158 float b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
159 float c = (x1 - xm1) / 2;
160 #if ENABLE_FILTER
161 this->pOutputLeft[i] += this->FilterLeft.Apply(effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
162 #else // no filter
163 this->pOutputLeft[i] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
164 #endif // ENABLE_FILTER
165
166 //calculate right channel
167 xm1 = pSrc[pos_int+1];
168 x0 = pSrc[pos_int+3];
169 x1 = pSrc[pos_int+5];
170 x2 = pSrc[pos_int+7];
171 a = (3 * (x0 - x1) - xm1 + x2) / 2;
172 b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
173 c = (x1 - xm1) / 2;
174 #if ENABLE_FILTER
175 this->pOutputRight[i++] += this->FilterRight.Apply(effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0));
176 #else // no filter
177 this->pOutputRight[i++] += effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
178 #endif // ENABLE_FILTER
179 #endif // USE_LINEAR_INTERPOLATION
180
181 this->Pos += pitch;
182 }
183 inline void InterpolateOneStep_Mono(sample_t* pSrc, int& i, float& effective_volume, float& pitch, float& cutoff, float& resonance) {
184 int pos_int = RTMath::DoubleToInt(this->Pos); // integer position
185 float pos_fract = this->Pos - pos_int; // fractional part of position
186
187 #if ENABLE_FILTER
188 UpdateFilter_Mono(cutoff + FILTER_CUTOFF_MIN, resonance);
189 #endif // ENABLE_FILTER
190
191 #if USE_LINEAR_INTERPOLATION
192 float sample_point = effective_volume * (pSrc[pos_int] + pos_fract * (pSrc[pos_int+1] - pSrc[pos_int]));
193 #else // polynomial interpolation
194 float xm1 = pSrc[pos_int];
195 float x0 = pSrc[pos_int+1];
196 float x1 = pSrc[pos_int+2];
197 float x2 = pSrc[pos_int+3];
198 float a = (3 * (x0 - x1) - xm1 + x2) / 2;
199 float b = 2 * x1 + xm1 - (5 * x0 + x2) / 2;
200 float c = (x1 - xm1) / 2;
201 float sample_point = effective_volume * ((((a * pos_fract) + b) * pos_fract + c) * pos_fract + x0);
202 #endif // USE_LINEAR_INTERPOLATION
203
204 #if ENABLE_FILTER
205 sample_point = this->FilterLeft.Apply(sample_point);
206 #endif // ENABLE_FILTER
207
208 this->pOutputLeft[i] += sample_point;
209 this->pOutputRight[i++] += sample_point;
210
211 this->Pos += pitch;
212 }
213 inline void UpdateFilter_Stereo(float cutoff, float& resonance) {
214 if (!(++FilterUpdateCounter % FILTER_UPDATE_PERIOD) && (cutoff != FilterLeft.Cutoff() || resonance != FilterLeft.Resonance())) {
215 FilterLeft.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
216 FilterRight.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
217 }
218 }
219 inline void UpdateFilter_Mono(float cutoff, float& resonance) {
220 if (!(++FilterUpdateCounter % FILTER_UPDATE_PERIOD) && (cutoff != FilterLeft.Cutoff() || resonance != FilterLeft.Resonance())) {
221 FilterLeft.SetParameters(cutoff, resonance, ModulationSystem::SampleRate());
222 }
223 }
224 inline float Constrain(float ValueToCheck, float Min, float Max) {
225 if (ValueToCheck > Max) ValueToCheck = Max;
226 else if (ValueToCheck < Min) ValueToCheck = Min;
227 return ValueToCheck;
228 }
229 };
230
231 #endif // __VOICE_H__

  ViewVC Help
Powered by ViewVC