Li nuxSanpl er Devel oper's

Internet Draft C. Schoenebeck
Docunent: draft-1inuxsanpl er-protocol-01.txt <Affiliation>
Expires: March 2004 Sat urday, January

3, 2004

Li nuxSanpl er Control Protocol

Status of this Menp

Thi s docunent specifies an application specific protocol for the
Li nuxSanpl er core application and arbitrary third party software
that interacts with the LinuxSanpl er application, and requests

di scussi on and suggestions for inprovenents. Distribution of this
meno is unlimted. THIS DOCUMENT IS ONLY AN I NI TI AL DRAFT NOT A
FI NAL VERSI ON OF THE PROTOCOL!

Abst r act

The Li nuxSanpler Control Protocol (LSCP) is an application-I|evel
protocol primarily intended for |ocal and renote controlling the

Li nuxSanpl er mai n application, which is a sophisticated console
application essentially playing back audi o sanpl es and nani pul ati ng
the sanples in real tine to certain extent.

Conventions used in this docunent

This protocol is always case-sensitive if not explicitly clained the
opposi te.

In exanples, "C" and "S:" indicate lines sent by the client
(frontend) and server (LinuxSanpler) respectively.

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMVENDED', "MAY", and "OPTIONAL" in
this docunent are to be interpreted as described in RFC-2119 [1].

Schoenebeck Expires - NMarch 2004 [Page 1]

Li nuxSanpl er Control Protocol January 2004

Tabl e of Contents

L. INtroduCti ON. . ..o 2
2. Conmruni cati ON OVEI VI BW. . . . vttt e e e e e 3
2.1 Sinple unidirectional comunication................... .. o..... 3
2.2 Advanced bidirectional conmmunication............. 3
3. Description for control commands. 5
4. CommBaNd SYNt aX. . ..ot 16
5. Events and special UDP packets............ 19
6. Event SyntaX. 21
Security Considerati ONS. 22
Ref eI BNCES. . . 22
ACKNOW edgmBNt S. 22
AUt hOr' S AdAr €SS eS. . . ot i 22

| nt roducti on

Li nuxSanpler is a so called software sanpl er application capable to
pl ayback audi o sanples froma conputer's Random Acess Menory (RAM
as well as directly streamng it fromdisk. LinuxSanpler is designed
to be nodular. It provides several so called “sanpler engines” where
each engine is specialized for a certain purpose. LinuxSanpler has
virtual channels which will be referred in this docunent as “sanpler
channel s”. The channels are in such way virtual as they can be
connected to an arbitrary M DI input nethod and arbitrary M D
channel (e.g. sanpler channel 17 could be connected to an ALSA
sequencer device 64:0 and listening to M D channel 1 there). Each
sanpler engine will be assigned an own instantance of one of the
avai |l abl e sanpl er engines (e.g. G gEngi ne, DLSEngi ne). The audio

out put of each sanpler channel can be routed to an arbitrary audio
out put nmethod (ALSA / JACK) and an arbitrary audi o output channe

t here.

Schoenebeck Expires - NMarch 2004 [Page 2]

Li nuxSanpl er Control Protocol January 2004

Communi cati on Overvi ew

There are two di stinct nethods of conmuni cati on between a running

I nstance of LinuxSanpler and one or nore control applications, so
called “frontends”:. a sinple TCP unidirectional comrunication nethod
and a TCP / UDP conbination for bidirectional comunication. The

| atter needs nore effort to be inplenented in the frontend
application. The two comruni cation nethods will be described next.

28l Si npl e unidirectional communication

This sinple conmmunication nethod is primarily based on TCP. The
frontend application establishes a TCP connection to the

Li nuxSanpl er instance on a certain host system Then the frontend
application will send certain ASCII based commands as defined in
this docunent and the LinuxSanpler application will response after a
certain process tinme with an appropriate ASCI|I based answer, also as
defined in this docunent. So this TCP communication is sinply based
on query and answer paradigm That way LinuxSanpler is only able to
answer on queries fromfrontends, but not able to send nessages if
iIt's not asked to. To keep LinuxSanpler's informations in the
frontend up-tp-date the frontend has to periodically send update
commands to get the current informations of the LinuxSanpl er
instance. This is often referred as “polling”. The di sadvant age of
this sinple unidirectional conmunication approach is obvious: it
nmeans network traffic overhead and i ntroduces | atency regarding the
update of the informations, but is very sinple to inplenent.

¢ Advanced bidirectional communication

Thi s nore sophisticated conmuni cation nethod is actually only an
extension of the sinple unidirectional comunication nethod. The
frontend still uses a TCP connection and sends the sanme commands on
the TCP connection, but the frontend has to provide an open UDP port
for receiving event nessages fromthe LinuxSanpler application. The
frontend has to register it's UDP port to the LinuxSanpler
application by sending the following coommand on it's TCP connecti on:

SUBSCRI BE NOTI FI CATI ON <udp- port >

where <udp-port> will be replaced by the respective UDP port nunber.
If this is accepted by the LinuxSanpler application, the frontend
will receive events fromthat point whenever sonme for the frontend
not eworthy event occurred in the LinuxSanpler instance. These event
UDP packets usually only contain basic informations |ike the event
category and for exanple on which sanpler channel the event
occurred. After receiving the event, the frontend m ght have to

Schoenebeck Expires - NMarch 2004 [Page 3]

Li nuxSanpl er Control Protocol January 2004

react by issueing a respective update command on it's TCP connecti on
to get the detailed change. This is dependant to the event type and
due to the fact that UDP packets are limted to certain packet size
(usually < 64 kB). So again, sone events provide already an exact

I nformati on about the new state and sonme need to be ordered on the
primary TCP connection by the frontend.

Exanple: the fill states of disk stream buffers have changed on
sanpl er channel 4 and the LinuxSanpler instance wll react by
sending the foll ow ng UDP packet:

CHANGE CHANNEL BUFFER FILL 4

Li nuxSanpler will not insert the fill states of the buffers into the
UDP packet, instead the frontend is forced to acquire this
I nformati on by sending the foll ow ng update conmmand:

GET CHANNEL BUFFER_FI LL PERCENTACE 4

to get the fill states of all disk stream buffers on sanpl er channe
4 and will receive the follow ng answer from Li nuxSanpl er:

“[35] 62% [33] 80% [37] 98%

Whi ch neans there are currently three active streans on sanpl er
channel 4, where the streamwith ID *“35” is filled by 62% stream
with ID33 is filled by 80% and streamwith ID 37 is filled by 98%

Besi de normal event packets, LinuxSanpler will also periodically
send PI NG packets to check if a frontend is still alive. The
frontend has to answer with a PONG UDP package (Pl NG and PONG UDP
packages will be defined later in this docunent). If LinuxSanpler
will not receive such a PONG packet it will consider the frontend to
be not available and renove it fromthe notification |ist. Such a
PI NG packet is also sent by LinuxSanpler when the frontend issued a
“SUBSCRI BE NOTI FI CATI ON' command to check if the given UDP port is
really avail abl e and not constrained by a firewall for exanple, so
the frontend has to open the input UDP port before it tries to

regi ster for notification by sending the nentioned conmand.

Schoenebeck Expires - NMarch 2004 [Page 4]

Li nuxSanpl er Control Protocol January 2004

Description for control comrands

This chapter will describe the available control commands that can
be sent on the TCP connection in detail.

Loadi ng an i nstrunent

An instrunent file can be | oaded and assigned to a sanpl er channe
by the foll owm ng command:

LOAD | NSTRUMENT <fil enane> <sanpl er - channel >

Where <filenanme> is the nane of the instrunent file on the

Li nuxSanpl er instance's host system and <sanpl er-channel > is the
nunber of the sanpler channel the instrunent should be assigned to.
Each sanpl er channel can only have one instrunent.

Possi bl e Answer s:

1] O(” -
in case the instrunent was successfully | oaded

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
in case the instrunent was | oaded successfully, but there
are noteworthy issue(s) related (e.g. Engine doesn't support
one or nore patch paranmeters provided by the | oaded
instrunent file), providing an appropriate warni ng code and
war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

Loadi ng a sanpl er engi ne

A sanpl e engi ne can be depl oyed and assigned to a specific sanpler
channel by the follow ng conmand:

LOAD ENG NE <engi ne- nane> <sanpl er - channel >

Where <engi ne-name> is usually the C++ class nane of the engine

i npl ement ati on and <sanpl er-channel > the sanpl er channel the

depl oyed engi ne shoul d be assigned to. Even if the respective
sanpl er channel has al ready a depl oyed engine with that engine

nanme, a new engi ne instance will be assigned to the sanpler channel.

Schoenebeck Expires - NMarch 2004 [Page 5]

Li nuxSanpl er Control Protocol January 2004

Possi bl e Answers:

1] O(” -
i n case the engi ne was successfully depl oyed

“WRN: <war ni hgcode>: <war ni ngnessage>"
i n case the engi ne was depl oyed successfully, but there
are noteworthy issue(s) related, providing an appropriate
war ni ng code and war ni ng nessage
“ERR: <errorcode>: <errornessage>" -
in case it failed, providing an appropriate error code and
error nessage
ElE] Current nunmber of sanpler channels
The nunber of sanpler channels can change on runtine. To get the
current anount of sanpler channels, the frontend can send the
foll ow ng command:
GET CHANNELS
Possi bl e Answers:
Li nuxSanpl er will answer returning the nunber of channels.
Exanpl e:
C. “CGET CHANNELS'
S. “32”
Addi ng a new sanpl er channel

A new sanpl er channel can be added to the end of the sanpler

channel list by sending the follow ng conmand:
ADD CHANNEL
This will increnent the sanpler channel count by one and the new

sanpl er channel will be appended to the end of the sanpler channe
list. The frontend should send the respective, rel ated commands
right after to e.g. load an engine, |load an instrunment and setting

I nput, output nethod and evtl. other commands to initialize the new
channel. The frontend shoul d use the sanpl er channel returned by
the answer of this command to performthe previously recomended
commands, to avoid race conditions e.g. with other frontends that

m ght al so have sent an “ADD CHANNEL” conmand.

Schoenebeck Expires - NMarch 2004 [Page 6]

Li nuxSanpl er Control Protocol January 2004

Possi bl e Answers:

“OK[<sanpl er -channel >] " -
i n case a new sanpl er channel coul d be added, where
<sanpl er-channel > refl ects the channel nunber of the new
created sanpl er channel which should the be used to set up
the sanpl er channel by sending subsequent intialization
conmmands

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
i n case a new channel was added succesfully, but there are
noteworthy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

Renovi ng a sanpl er channel
A sanpl er channel can be renoved by sending the foll ow ng command:
REMOVE CHANNEL <sanpl er - channel >
This will decrenent the sanpler channel count by one and al so
decrenent the channel nunbers of all subsequent sanpler channels by
one.

Possi bl e Answers:

4 O(” -
I n case the given sanpler channel could be renoved

“WRN: <war ni nhgcode>: <war ni ngnessage>"
I n case the given channel was renoved, but there are
notewort hy i ssue(s) related, providing an appropriate
war ni ng code and war ni ng nessage

“ERR: <errorcode>: <errornessage>" -
in case it failed, providing an appropriate error code and
error nessage
Ell§ Cetting all avail abl e engines
The frontend can ask for all avail abl e engi nes by sending the
foll ow ng command:

Schoenebeck Expires - NMarch 2004 [Page 7]

Li nuxSanpl er Control Protocol January 2004

CGET AVAI LABLE _ENG NES
Possi bl e Answers:

Li nuxSanpler will answer by sending a comma separated character
string of the engi nes' C++ class nanes.

Exanpl e:
C. “CGET AVAI LABLE _ENGJ NES’
S: “ @ gEngi ne, Akai Engi ne, DLSEngi ne, JoesCust onEngi ne”
cMll Getting informations about an engine

The frontend can ask for informations about a specific engi ne by
sending the foll ow ng command:

GET ENG NE | NFO <engi ne- nane>

Wiere <engi ne-nane> is usually the C++ class nane of the engine
I npl enent ati on.

Possi bl e Answer s:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the information category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that info category. At the nonent
the follow ng categories are defined:

DESCRI PTI ON —
arbitrary description text about the engine
VERSI ON -
arbitrary character string regarding the engine's
ver si on

The nentioned fields above don't have to be in particular order.
Exanpl e:
C. “GET ENG NE | NFO JoesCust onEngi ne”

S: “DESCRIPTION:. this is Joe's custom sanpl er engi ne”
“VERSI ON: testing-1.0"

Schoenebeck Expires - NMarch 2004 [Page 8]

Li nuxSanpl er Control Protocol January 2004

Ell: Cetting sanpler channel informations

The frontend can ask for the current settings of a sanpler channe
by sending the foll ow ng conmand:

GET CHANNEL | NFO <sanpl er - channel >

Wher e <sanpl er-channel > is the sanpl er channel nunber the frontend
Is interested in.

Possi bl e Answer s:

Li nuxSanpl er will answer by sending a <CRLF> separated |ist.
Each answer |ine begins with the settings category nane

foll owed by a colon and then a space character <SP> and finally
the info character string to that setting category. At the
nonent the follow ng categories are defined:

ENG NE_NAME —
name of the engine that is deployed on the sanpler
channel , “<NONE>" if there's no engi ne depl oyed yet for

thi s sanpl er channel

AUDI O OQUTPUT_TYPE —
out put systemwhich is currently used to output the
audi o signal (at the nonent either “ALSA’ or “JACK’)

AUDI O_ OUTPUT_CHANNEL -
t he physical output channel nunber for the audi o signa

| NSTRUVENT —
the file name of the | oaded instrunent, “<NONE>" if
there's no instrunent yet |oaded for this sanpler
channel

M DI _| NPUT_TYPE -
at the nonment only “ALSA’, but will change in future

M DI _| NPUT_PORT -
character string representing the input MD port
(in case of ALSA e.g. “64:0")

M DI _| NPUT_CHANNEL —
the M D input channel nunber this sanpler channe
should listen to

VOLUVE —
optionally dotted nunber for the channel vol une factor

Schoenebeck Expires - NMarch 2004 [Page 9]

Li nuxSanpl er Control Protocol January 2004

(where a value < 1.0 neans attenuation and a val ue >
1.0 nmeans anplification)

The nmentioned fields above don't have to be in particular order.
Exanpl e:
C. “GET CHANNEL I NFO 34~
S: “ENG NE_NAME: G gEngi ne”
“VOLUME: 1.0
“AUDI O OUTPUT_TYPE: ALSA’
“AUDI O_OUTPUT_CHANNEL: 8”
“I NSTRUMENT: / home/j oe/ Fazi ol i Pi ano. gi g”
“M DI _| NPUT_TYPE: ALSA’

“M DI _I NPUT_PORT: 64: 0"
“M DI _I NPUT_CHANNEL: 5"

ElE] Current nunmber of active voices

The frontend can ask for the current nunber of active voices on a
sanpl er channel by sending the follow ng conmand:

GET CHANNEL VO CE_COUNT <sanpl er - channel >

Wher e <sanpl er-channel > is the sanpl er channel nunber the frontend
Is interested in.

Possi bl e Answers:
Li nuxSanpler will answer by returning the nunber of active
voi ces on that channel
SN Current nunber of active disk streans

The frontend can ask for the current nunber of active di sk streans
on a sanpl er channel by sending the foll ow ng command:

GET CHANNEL STREAM COUNT <sanpl er - channel >

Wher e <sanpl er-channel > i s the sanpl er channel nunber the frontend
Is interested in.

Possi bl e Answers:
Li nuxSanpler will answer by returning the nunber of active

di sk streans on that channel in case the engi ne supports disk
streamng, if the engine doesn't support disk streamng it wll

Schoenebeck Expires - NMarch 2004 [Page 10]

Li nuxSanpl er Control Protocol January 2004
return “NA” for not avail abl e.

SREEl Current fill state of disk streambuffers

The frontend can ask for the current fill state of all disk streans
on a sanpler channel by sending the foll ow ng comrand:

GET CHANNEL BUFFER_FI LL BYTES <sanpl er - channel >
to get the fill state in bytes or
GET CHANNEL BUFFER_FI LL PERCENTACE <sanpl er-channel >

to get the fill state in percent, where <sanpl er-channel > is the
sanpl er channel nunber the frontend is interested in.

Possi bl e Answers:
Li nuxSanpler will answer by returning a conma separated string
with the fill state of all disk streambuffers on that channel
or “NA” for not available in case the engi ne which is depl oyed
doesn't support disk stream ng. Each entry in the answer i st
will begin with the streamis IDin brackets foll owed by the
nunerical representation of the fill size (either in bytes or
per cent age) .

Exanpl e:

C. “GET CHANNEL BUFFER FILL BYTES 4"
“[115] 420500, [116] 510300, [75] 110000, [120] 230700"

S

C. “CGET CHANNEL BUFFER FI LL PERCENTAGE 4”7

S “[115]90% [116] 98% [75] 40% [120] 62%
Setting audi o output type

The frontend can alter the audio output type on a specific sanpler
channel by sending the foll owm ng command:

SET CHANNEL AUDI O QUTPUT_TYPE <sanpl er - channel > <audi o- out put -t ype>

Wher e <audi o-output-type>is currently either “ALSA” or *“JACK’ and
<sanpl er-channel > i s the respective sanpl er channel nunber.

Possi bl e Answers:

“ O(” _

Schoenebeck Expires - NMarch 2004 [Page 11]

Li nuxSanpl er Control Protocol January 2004

on success

“WRN: <war ni hgcode>: <war ni ngnessage>"
i f audi o output type was set, but there are noteworthy
I ssue(s) related, providing an appropriate warning code and
war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

Setting audi o output channel

The frontend can alter the audi o output channel on a specific
sanpl er channel by sending the follow ng conmand:

SET CHANNEL AUDI O OQUTPUT_CHANNEL <sanpl er-channel > <audi o- channel >

Wher e <audi o-channel > i s the physical output channel where the
audi o signal of this sanpler channel should be routed to and
<sanpl er-channel > i s sanpl er channel where this shoul d happen.

Possi bl e Answer s:

4 mﬂ -
on success

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
I f audi o out put channel was set, but there are noteworthy
I ssue(s) related, providing an appropriate warning code and
war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

Setting MDI input port

The frontend can alter the input MD port on a specific sanpler
channel by sending the foll owm ng command:

SET CHANNEL M DI _|I NPUT_PORT <sanpl er - channel > <m di -i nput - port >
Where <mdi-input-port>is the MDI input port string (in case of

ALSA for exanple “64:0” and <sanpl er-channel > is the sanpl er
channel where this should be altered.

Schoenebeck Expires - NMarch 2004 [Page 12]

Li nuxSanpl er Control Protocol January 2004

Possi bl e Answers:

4 mﬂ -
on success

“WRN: <war ni hgcode>: <war ni ngnessage>"
if MDI input port was set, but there are noteworthy
I ssue(s) related, providing an appropriate warni ng code and
war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

in case it failed, providing an appropriate error code and
error nessage

S Setting MDI input channe

The frontend can alter the M D channel a sanpler channel shoul d
listen to by sending the foll owm ng command:

SET CHANNEL M DI _|I NPUT_CHANNEL <sanpl er-channel > <m di - i nput - chan>

Where <m di-input-chan> is the new M D input channel where
<sanpl er-channel > shoul d |isten to.

Possi bl e Answers:

1] O(” -
on success
“WRN: <war ni nhgcode>: <war ni ngnessage>" -
if MDI input channel was set, but there are noteworthy
I ssue(s) related, providing an appropriate warning code and
war ni ng nessage
“ERR: <errorcode>: <errornessage>"

in case it failed, providing an appropriate error code and
error nessage

Setting channel vol une

The frontend can alter the volunme of a sanpler channel by sending
the foll owi ng command:

SET CHANNEL VOLUME <sanpl er - channel > <vol une>

Where <volune> is an optionally dotted positive nunber (a val ue
smal l er than 1.0 neans attenutation, whereas a val ue greater than

Schoenebeck Expires - NMarch 2004 [Page 13]

Li nuxSanpl er Control Protocol January 2004

1.0 neans anplification) and <sanpl er-channel > defi nes the sanpler
channel where this volune factor should be set.

Possi bl e Answers:

4 mﬂ -
on success

“WRN: <war ni hgcode>: <war ni ngnessage>"
i f channel volune was set, but there are noteworthy
I ssue(s) related, providing an appropriate warni ng code and
war ni ng nessage

“ERR <errorcode>: <errornessage>" - _
in case it failed, providing an appropriate error code and
error nessage

EMEN{ Register frontend for receiving UDP event nessages

The frontend can register itself to the LinuxSanpler application to
be i nformed about noteworthy events by sending this command:

SUBSCRI BE NOTI FI CATI ON <udp- port >

Where <udp-port> is the UDP port nunber on the frontend's host on
which the frontend will listen to. The frontend has to open, listen
and react on that port before it tries to register itself for
NOTI FI CATI ON, because the LinuxSanpler instance will send a PI NG
packet to test if the UDP is actually reachable and the frontend is
listening on that port. The frontend will then imedi ately have to
answer by sending a PONG packet, el se the SUBSCRI BE NOTI FI CATI ON
command will fail (see UDP chapter for PING and PONG packets). The
Li nuxSanpl er instance will periodically send PING packets on which
the frontend has to answer, el se LinuxSanpler assunes the frontend
to be not available and will stop to send notification / event
nmessages.

Possi bl e Answers:

4 O(” -
on success
“WRN: <war ni nhgcode>: <war ni ngnessage>" -
If registration succeeded, but there are noteworthy
I ssue(s) related, providing an appropriate warni ng code and
war ni ng nessage

“ERR: <errorcode>: <errornessage>" -

Schoenebeck Expires - NMarch 2004 [Page 14]

Li nuxSanpl er Control Protocol January 2004

in case it failed, providing an appropriate error code and
error nessage

EREE] Deregister frontend for not receiving UDP event nessages anynore

The frontend can deregister itself if it doesn't want to receive UDP
event packets anynore by sending the foll ow ng conmand:

UNSUBSCRI BE NOTI FI CATI ON [<udp- por t >]

Where <udp-port> is currently optional but reconmmended, reflecting
the UDP port nunber on which the frontend recently registered to
recei ve event packets on, if <udp-port> is not provided LinuxSanpler
will deregister all registered UDP event ports on the frontend's
host system | P address, so this could cause that other frontends

won't receive further event packages on that host w thout know ng
it.

Possi bl e Answer s:

4 mﬂ -
on success

“WRN: <war ni nhgcode>: <war ni ngnessage>" -
I f deregistration succeeded, but there are noteworthy

I ssue(s) related, providing an appropriate warni ng code and
war ni ng nessage

“ERR: <errorcode>: <errornessage>"

in case it failed, providing an appropriate error code and
error nessage

Schoenebeck Expires - NMarch 2004 [Page 15]

Li nuxSanpl er Control Protocol January 2004

/M Conmand Synt ax

The followi ng are the LSCP (Li nuxSanpler control protocol) comands:
ADD <SP> CHANNEL
GET <SP> <get-instruction>
LOAD <SP> <| oad-i nstruction>
REMOVE <SP> CHANNEL <SP> <sanpl er - channel >
SET <SP> CHANNEL <SP> <set-chan-instruction>
SUBSCRI BE <SP> NOTI FI CATI ON <SP> <udp- port >
UNSUBSCRI BE <SP> NOTI FI CATI ON [<SP> <udp- port >]

The syntax of the above argunent fields is given bel ow usi ng Backus-
Naur Form (BNF as described in RFC-2234 [?]) where applicable.

<get-instruction> ::=
AVAI LABLE_ENG NES |
CHANNELS |
CHANNEL <SP> | NFO <SP> <sanpl er - channel >
CHANNEL <SP> BUFFER FI LL <SP> <buffer-size-type> <SP>
<sanpl er - channel > |
CHANNEL <SP> STREAM COUNT <SP> <sanpl er - channel >
CHANNEL <SP> VO CE_COUNT <SP> <sanpl er-channel > |
ENG NE <SP> | NFO <SP> <engi ne- nane>

<l oad-instruction> ::=
| NSTRUVENT <SP> <| oad-instr-args>
ENG NE <SP> <| oad- engi ne- ar gs>

<sanpl er - channel > :: = <nunber >

<set-chan-instruction> ::=

AUDI O QUTPUT_CHANNEL <SP> <sanpl er - channel > <SP>
<audi o- out put - channel >

AUDI O QUTPUT_TYPE <SP> <sanpl er - channel > <Sp>
<audi o- out put -t ype>

M DI _| NPUT_PORT <SP> <sanpl er - channel > <SP>
<m di -i nput - port> |

M DI _| NPUT_CHANNEL <SP> <sanpl er - channel > <Sp>
<m di - i nput - channel > |

M DI _| NPUT_TYPE <SP> <sanpl er - channel > <SP>

Schoenebeck Expires - NMarch 2004 [Page 16]

Li nuxSanpl er Control Protocol January 2004
<m di -i nput -type>

VOLUME <SP> <sanpl er - channel > <SP> <vol une>
<udp-port> ::= <nunber>
<buffer-size-type> ::= BYTES | PERCENTAGE
<engi ne- nane> :: = <cpp-cl assnane>
<l oad-instr-args> ::= <fil enane> <SP> <sanpl er - channel >
<| oad- engi ne-args> ::= <engi ne- nane> <SP> <sanpl er - channel >
<audi o- out put - channel > :: = <nunber>
<audi o-out put -type> ::= ALSA | JACK
<m di -i nput-port> ::= <string>

<m di-input-channel> ::=1| 2| 3| 4| 5| 6| 7] 8] 9| 10 |
11| 12 | 13| 14 | 15| 16

<m di -i nput-type> ::= ALSA
<vol une> ::= <dot nune

<cpp-classnane> ::= class nane as defined by the C++ progranm ng
| anguage

<filenanme> ::= <string>
<string> ::= <char> | <char> <string>
<char> ::= <c> | "\" <x>

<c> ::= any one of the 128 ASCI| characters, but not any
<speci al > or <SP>

<special> ::="<" [">" | ";" | " | "& | "{" | "}" | the control
characters (ASCl I codes 0 through 31 inclusive and 127)

<dot nun® ::= <snune "." <nunber>

<nunber> ::= <d> | <d> <nunber>

<d> ::= any one of the ten digits O through 9

<snun® ::= arbitrary nunber of digits representing a deci nal

I nteger value in the range including O to infinity

Schoenebeck Expires - NMarch 2004 [Page 17]

Li nuxSanpl er Control Protocol January 2004

<CRLF> ::= <CR> <LF>

<CR> :.:=the carriage return character (ASCI| code 13)
<LF> ::=the line feed character (ASCI| code 10)

<SP> : .= the space character (ASCI| code 32)

<x> ::= any one of the 128 ASCI| characters (no excepti ons)

Schoenebeck Expires - NMarch 2004 [Page 18]

Li nuxSanpl er Control Protocol January 2004

W Events and special UDP packets
This chapter will describe all currently defined UDP packets sent
by Li nuxSanpl er.
JEl Nunber of sanpler channels changed
In this case LinuxSanpler will send the foll ow ng packet:
“CHANGE CHANNELS <channel s>”
Where <channel s> wll| be reapl aced by the new nunber of sanpler
channel s.
W Nunber of active voices changed
In this case LinuxSanpler will send a packet with foll ow ng shape:
CHANGE CHANNEL VA CE_COUNT <sanpl er - channel > <voi ces>
Wher e <sanpl er-channel > will be replaced by the sanpler channel the
voi ce count change occurred and <voi ces> by the new nunber of
active voices on that channel.
MK Nunber of active disk streans changed
In this case LinuxSanpler will send a packet with foll ow ng shape:
CHANGE CHANNEL STREAM COUNT <sanpl er - channel > <streans>
Wher e <sanpl er-channel > will be replaced by the sanpler channel the
stream count change occurred and <strean® by the new nunber of
active disk streans on that channel.
Di sk streambuffer fill state changed
In this case LinuxSanpler will send a packet with foll ow ng shape:
CHANGE CHANNEL BUFFER FI LL <sanpl er - channel >
Wher e <sanpl er-channel > will be replaced by the sanpler channel the
buffer fill state change occurred. The frontend will have to send

the respective conmand to actually get the fill state values. This
I s unavoi dable due to the packet size limt of UDP.

Schoenebeck Expires - NMarch 2004 [Page 19]

Li nuxSanpl er Control Protocol January 2004

Channel infornmations changed
In this case LinuxSanpler will send a packet with foll ow ng shape:
CHANGE CHANNEL | NFO <sanpl er - channel >
Wher e <sanpl er-channel > will be replaced by the sanpler channel the
channel info change occurred. The frontend will have to send
the respective conmmand to actually get the channel info. This is
unavoi dabl e due to the packet size limt of UDP.
Speci al packet PI NG
Sense behind this packet is to check if the frontend is (still)
listening on it's registered UDP port. This special packet has this
shape:
Pl NG <udp- port> <string>
Where <string> is an arbitrary character string that has to be
confirmed by the frontend by sending a PONG UDP packet to the UDP
port given by <udp-port> to LinuxSanpler's host |IP address.
Speci al packet PONG
Thi s packet has to be returned by the frontend in reaction to a
PI NG packet received from Li nuxSanpl er. A PONG packet |ooks |ike
this:
PONG <stri ng>

Where <string> is a character string transmtted wth PING which
shoul d be send in order to confirmthe PING packet.

Exanpl e:
S: “PING 2067 ahj _89zdi Q
C. “PONG ahj _89zdi Q (sent to port 2067 of LinuxSanpler's
host)

Schoenebeck Expires - NMarch 2004 [Page 20]

Li nuxSanpl er Control Protocol January 2004

M Event Syntax

The follow ng are the defined event nessages sent via UDP (only in
case the frontend registered itself to receive UDP event packets):

CHANGE <SP> <event-arg>
Pl NG <SP> <udp- port> <SP> <stri ng>
PONG <SP> <string>

The syntax of the above argunent fields is given bel ow usi ng Backus-
Naur Form (BNF as described in RFC- 2234 [3]) where applicable.

<event-arg> ::=

CHANNELS <SP> <channel s>

CHANNEL <SP> VO CE_COUNT <SP> <sanpl er - channel > <SP>
<voi ce-count > |

CHANNEL <SP> STREAM COUNT <SP> <sanpl er - channel >
<SP> <stream count> |

CHANNEL <SP> BUFFER FI LL <SP> <sanpl er - channel >

CHANNEL <SP> | NFO <SP> <sanpl er - channel >

<udp-port> ::= <nunber>

<sanpl er - channel > :: = <nunber >

<string> ::= <char> | <char> <string>

<channel s> :: = <nunber >

<voi ce-count > ::= <nunber>

<stream count> ::= <nunber>

<char> ::= <c> | "\" <x>

<c> ::= any one of the 128 ASCI| characters, but not any

<speci al > or <SP>
<special> ::="<" | ">" | ";" | ":" | "& | "{" | "}" | the
control characters (ASCI|I codes O through 31
I nclusive and 127)

<nunber> ::= <d> | <d> <nunber>

Schoenebeck Expires - NMarch 2004 [Page 21]

Li nuxSanpl er Control Protocol January 2004

<d> ::= any one of the ten digits O through 9
<x> ::= any one of the 128 ASCI| characters (no exceptions)
<SP> : .= the space character (ASCI| code 32)

Security Considerations
As there is so far no nethod of authentication and authorisation
defined and so not required for a client applications to succeed to
connect, running LinuxSanpler mght be a security risk for the host
system t he LinuxSanpler instance is running on.

Ref er ences

< Your references will be listed here. View "Page Layout" if they
are not currently visible. >

Acknow edgnent s

<Add any acknow edgenent s>

Aut hor' s Addr esses

<Fi r st nane> <Last nanme>
<Affiliation>

<Addr ess>
Phone: <optional >
Emai |l : <Your enmil|l address>

Schoenebeck Expires - NMarch 2004 [Page 22]

1 Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997

2 Crocker, D. and Overell, P.(Editors), "Augnented BNF for
Syntax Specifications: ABNF', RFC 2234, Internet Muil
Consortium and Denon Internet Ltd., Novenber 1997

3 Crocker, D. and Overell, P.(Editors), "Augnmented BNF for
Syntax Specifications: ABNF', RFC 2234, Internet Muil
Consortium and Denon Internet Ltd., Novenber 1997

