
LinuxSampler Developer's
Internet Draft C. Schoenebeck
Document: draft-linuxsampler-protocol-05.txt <Affiliation>
Expires: June 2004 Wednesday, May

19, 2004

LinuxSampler Control Protocol

Status of this Memo

This document specifies an application specific protocol for the
LinuxSampler core application and arbitrary third party software
that interacts with the LinuxSampler application, and requests
discussion and suggestions for improvements. Distribution of this
memo is unlimited. THIS DOCUMENT IS ONLY AN INITIAL DRAFT NOT A
FINAL VERSION OF THE PROTOCOL!

Abstract

The LinuxSampler Control Protocol (LSCP) is an application-level
protocol primarily intended for local and remote controlling the
LinuxSampler main application, which is a sophisticated console
application essentially playing back audio samples and manipulating
the samples in real time to certain extent.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119 [1].

This protocol is always case-sensitive if not explicitly claimed the
opposite.

In examples, "C:" and "S:" indicate lines sent by the client
(frontend) and server (LinuxSampler) respectively. Lines in examples
must be interpreted as every line being CRLF terminated (carriage
return character followed by line feed character as defined in the
ASCII standard), thus the following example:

 C: “some line”
 “another line”

must actually be interpreted as client sending the following message:

 “some line<CR><LF>another line<CR><LF>”

Schoenebeck Expires - June 2004 [Page 1]

LinuxSampler Control Protocol May 2004

where <CR> symbolizes the carriage return character and <LF> the
line feed character as defined in the ASCII standard.

Due to technical reasons, messages can arbitrary be fragmented,
means the following example:

S: “abcd”

could also happen to be sent in three messages like in the following
sequence scenario:

– server sending message “a”
– followed by a delay (pause) with arbitrary duration
– followed by server sending messsage “bcd<CR>”
– again followed by a delay (pause) with arbitrary duration
– followed by server sending the message “<LF>”

where again <CR> and <LF> symbolize the carriage return and line
feed characters respectively.

Schoenebeck Expires - June 2004 [Page 2]

LinuxSampler Control Protocol May 2004

Table of Contents

1. Introduction...3
2. Communication Overview...3
2.1 Simple unidirectional communication.............................4
2.2 Advanced bidirectional communication............................4
3. Description for control commands.................................5
3.1 Configuring audio drivers.......................................5
3.2 Configuring MIDI input drivers.................................17
3.3 Configuring sampler channels...................................27
4. Command Syntax..39
5. Events and special UDP packets..................................42
6. Event Syntax..44
Security Considerations..45
References...45
Acknowledgments..45
Author's Addresses...45

1. Introduction

LinuxSampler is a so called software sampler application capable to
playback audio samples from a computer's Random Acess Memory (RAM)
as well as directly streaming it from disk. LinuxSampler is designed
to be modular. It provides several so called “sampler engines” where
each engine is specialized for a certain purpose. LinuxSampler has
virtual channels which will be referred in this document as “sampler
channels”. The channels are in such way virtual as they can be
connected to an arbitrary MIDI input method and arbitrary MIDI
channel (e.g. sampler channel 17 could be connected to an ALSA
sequencer device 64:0 and listening to MIDI channel 1 there). Each
sampler engine will be assigned an own instantance of one of the
available sampler engines (e.g. GigEngine, DLSEngine). The audio
output of each sampler channel can be routed to an arbitrary audio
output method (ALSA / JACK) and an arbitrary audio output channel
there.

2. Communication Overview

There are two distinct methods of communication between a running
instance of LinuxSampler and one or more control applications, so
called “frontends”: a simple TCP unidirectional communication method
and a TCP / UDP combination for bidirectional communication. The
latter needs more effort to be implemented in the frontend
application. The two communication methods will be described next.

Schoenebeck Expires - June 2004 [Page 3]

LinuxSampler Control Protocol May 2004

2.1 Simple unidirectional communication

This simple communication method is primarily based on TCP. The
frontend application establishes a TCP connection to the
LinuxSampler instance on a certain host system. Then the frontend
application will send certain ASCII based commands as defined in
this document (every command line must be CRLF terminated – see
“Conventions used in this document” at the beginning of this
document) and the LinuxSampler application will response after a
certain process time with an appropriate ASCII based answer, also as
defined in this document. So this TCP communication is simply based
on query and answer paradigm. That way LinuxSampler is only able to
answer on queries from frontends, but not able to automatically send
messages to the client if it's not asked to. The fronted should not
reconnect to LinuxSampler for every single commmand, instead it
should keep the connection established and simply resend message(s)
for subsequent commands. To keep LinuxSampler's informations in the
frontend up-to-date the frontend has to periodically send update
commands to get the current informations of the LinuxSampler
instance. This is often referred as “polling”. The disadvantage of
this simple unidirectional communication approach is obvious: it
means network traffic overhead and introduces latency regarding the
update of the informations, but is very simple to implement.

2.2 Advanced bidirectional communication

This more sophisticated communication method is actually only an
extension of the simple unidirectional communication method. The
frontend still uses a TCP connection and sends the same commands on
the TCP connection, but the frontend has to provide an open UDP port
for receiving event messages from the LinuxSampler application. The
frontend has to register it's UDP port to the LinuxSampler
application by sending the following command on it's TCP connection:

 SUBSCRIBE NOTIFICATION <udp-port>

where <udp-port> will be replaced by the respective UDP port number.
If this is accepted by the LinuxSampler application, the frontend
will receive events from that point whenever some for the frontend
noteworthy event occurred in the LinuxSampler instance. These event
UDP packets usually only contain basic informations like the event
category and for example on which sampler channel the event
occurred. After receiving the event, the frontend might have to
react by issueing a respective update command on it's TCP connection
to get the detailed change. This is dependant to the event type and
due to the fact that UDP packets are limited to certain packet size
(usually < 64 kB). So again, some events provide already an exact
information about the new state and some need to be ordered on the

Schoenebeck Expires - June 2004 [Page 4]

LinuxSampler Control Protocol May 2004

primary TCP connection by the frontend.

Example: the fill states of disk stream buffers have changed on
sampler channel 4 and the LinuxSampler instance will react by
sending the following UDP packet:

 CHANGE CHANNEL BUFFER_FILL 4

LinuxSampler will not insert the fill states of the buffers into the
UDP packet, instead the frontend is forced to acquire this
information by sending the following update command:

 GET CHANNEL BUFFER_FILL PERCENTAGE 4

to get the fill states of all disk stream buffers on sampler channel
4 and will receive the following answer from LinuxSampler:

“[35]62%,[33]80%,[37]98%”

Which means there are currently three active streams on sampler
channel 4, where the stream with ID “35” is filled by 62%, stream
with ID 33 is filled by 80% and stream with ID 37 is filled by 98%.

Beside normal event packets, LinuxSampler will also periodically
send PING packets to check if a frontend is still alive. The
frontend has to answer with a PONG UDP package (PING and PONG UDP
packages will be defined later in this document). If LinuxSampler
will not receive such a PONG packet it will consider the frontend to
be not available and remove it from the notification list. Such a
PING packet is also sent by LinuxSampler when the frontend issued a
“SUBSCRIBE NOTIFICATION” command to check if the given UDP port is
really available and not constrained by a firewall for example, so
the frontend has to open the input UDP port before it tries to
register for notification by sending the mentioned command.

3. Description for control commands

This chapter will describe the available control commands that can
be sent on the TCP connection in detail. Some certain commands (e.g.
“GET CHANNEL INFO” or “GET ENGINE INFO”) lead to multiple-line
responses. In this case LinuxSampler signals the end of the response
by a “.” (single dot) line.

3.1 Configuring audio drivers

Drivers in LinuxSampler are called devices. You can use multiple
devices simultaniously, e.g. to output the sound of one sampler

Schoenebeck Expires - June 2004 [Page 5]

LinuxSampler Control Protocol May 2004

channel using the Alsa audio output driver, and on another sampler
channel you might want to use the Jack audio output driver. Usually
these devices will be created automatically by LinuxSampler when
you select an audio output type on a sampler channel and the
respective device was not created yet, but this is not always
possible, because some drivers might require explicit parameters
(e.g. host name for some audio over ethernet driver) and even if
not, LinuxSampler will just use default settings when it has to
automatically create a device. So the following commands are used
to configure LinuxSampler's audio output drivers and their
parameters.

Instead of defining commands and parameters for each driver
individually, all possible parameters, their meanings and possible
values have to be obtained at runtime. This makes the protocol a
bit abstract, but has the advantage, that frontends can be written
independently of what drivers are implemented and what parameters
these drivers are actually offering.

3.1.1 Getting all available audio output drivers

Use the following command to list all audio output drivers
currently available for the LinuxSampler instance:

 GET AVAILABLE_AUDIO_OUTPUT_TYPES

 Possible Answers:

 LinuxSampler will answer by sending comma separated character
 strings symbolizing the available audio output drivers.

 Example:

 C: “GET AVAILABLE_AUDIO_OUTPUT_TYPES”
 S: “Alsa,Jack”

3.1.1 Getting informations about a specific audio output driver

Use the following command to get detailed informations about a
specific audio output driver:

 GET AUDIO_OUTPUT_TYPE INFO <audio-output-type>

Where <audio-output-type> is the name of the audio output driver,
returned by the “GET AVAILABLE_AUDIO_OUTPUT_TYPES” command.

 Possible Answers:

Schoenebeck Expires - June 2004 [Page 6]

LinuxSampler Control Protocol May 2004

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following information categories are defined:

 DESCRIPTION –
 character string describing the audio output driver

 VERSION -
 character string reflecting the driver's version

 PARAMETERS –
 comma separated list of all parameters available for
 the given audio output driver, at least parameters
 'CHANNELS', 'SAMPLERATE' and 'ACTIVE' are offered by
 all audio output drivers

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET AUDIO_OUTPUT_TYPE INFO Alsa”
 S: “DESCRIPTION: Advanced Linux Sound Architecture”
 “VERSION: 1.0”
 “PARAMETERS: CHANNELS,SAMPLERATE,ACTIVE,FRAGMENTS,FRAGMENTSIZE,CARD”
 “.”

3.1.1 Getting informations about specific audio output driver parameter

Use the following command to get detailed informations about a
specific audio output driver parameter:

 GET AUDIO_OUTPUT_TYPE_PARAMETER INFO <audio-t> <prm> [<deplist>]

Where <audio-t> is the name of the audio output driver as returned
by the “GET AVAILABLE_AUDIO_OUTPUT_TYPES” command, <prm> a specific
parameter name for which information should be obtained (as
returned by the “GET AUDIO_OUTPUT_TYPE INFO” command) and
<deplist> is an optional list of parameters on which the sought
parameter <prm> depends on, <deplist> is a list of key-value pairs
in form of “key1=val1 key2=val2 ...”, where character string values
are encapsulated into apostrophes ('). Arguments given with
<deplist> which are not dependency parameters of <prm> will be
ignored, means the frontend application can simply put all
parameters into <deplist> with the values selected by the user.

Schoenebeck Expires - June 2004 [Page 7]

LinuxSampler Control Protocol May 2004

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. There are
 informations which are always returned, independently of the
 given driver parameter and there are optional informations
 which are only shown dependently to given driver parameter. At
 the moment the following information categories are defined:

 DESCRIPTION –
 arbitrary text describing the purpose of the parameter
 (always returned, no matter which driver parameter)

 MANDATORY -
 either true or false, defines if this parameter must be
 given when the device is to be created with the
 'CREATE AUDIO_OUTPUT_DEVICE' command
 (always returned, no matter which driver parameter)

 FIX -
 either true or false, if false then this parameter can
 be changed at any time, once the device is created by
 the 'CREATE AUDIO_OUTPUT_DEVICE' command
 (always returned, no matter which driver parameter)

 MULTIPLICITY -
 either true or false, defines if this parameter allows
 only one value or a list of values, where true means
 multiple values and false only a single value allowed
 (always returned, no matter which driver parameter)

 DEPENDS -
 comma separated list of paramters this parameter depends
 on, means the values for fields 'DEFAULT', 'RANGE_MIN',
 'RANGE_MAX' and 'POSSIBILITIES' might depend on these
 listed parameters, for example assuming that an audio
 driver (like the Alsa driver) offers parameters 'CARD'
 and 'SAMPLERATE' then parameter 'SAMPLERATE' would
 depend on 'CARD' because the possible values for
 'SAMPLERATE' depends on the sound card which can be
 chosen by the 'CARD' parameter
 (optionally returned, dependent to driver parameter)

 DEFAULT –
 reflects the default value for this parameter which is
 used when the device is created and not explicitly
 given with the 'CREATE AUDIO_OUTPUT_DEVICE' command,

Schoenebeck Expires - June 2004 [Page 8]

LinuxSampler Control Protocol May 2004

 in case of MULTIPLCITY=true, this is a comma separated
 list, that's why character strings are encapsulated into
 apostrophes (')
 (optionally returned, dependent to driver parameter)

 RANGE_MIN –
 defines lower limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number
 (optionally returned, dependent to driver parameter, but
 always in conjunction with RANGE_MAX)

 RANGE_MAX –
 defines upper limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number
 (optionally returned, dependent to driver parameter, but
 always in conjunction with RANGE_MIN)

 POSSIBILITES –
 comma separated list of possible values for this
 parameter, character strings are encapsulated into
 apostrophes
 (optionally returned, dependent to driver parameter)

 The mentioned fields above don't have to be in particular order.

 Examples:

 C: “GET AUDIO_OUTPUT_TYPE_PARAMETER INFO Alsa CARD”
 S: “DESCRIPTION: sound card to be used”
 “MANDATORY: false”
 “FIX: true”
 “MULTIPLICITY: false”
 “DEFAULT: '0,0'”
 “POSSIBILITES: '0,0','1,0','2,0'”
 “.”

 C: “GET AUDIO_OUTPUT_TYPE_PARAMETER INFO Alsa SAMPLERATE”
 S: “DESCRIPTION: output sample rate in Hz”
 “MANDATORY: false”
 “FIX: false”
 “MULTIPLICITY: false”
 “DEPENDS: CARD”
 “DEFAULT: 44100”
 “.”

 C: “GET AUDIO_OUTPUT_TYPE_PARAMETER INFO Alsa SAMPLERATE CARD='0,0'”
 S: “DESCRIPTION: output sample rate in Hz”

Schoenebeck Expires - June 2004 [Page 9]

LinuxSampler Control Protocol May 2004

 “MANDATORY: false”
 “FIX: false”
 “MULTIPLICITY: false”
 “DEPENDS: CARD”
 “DEFAULT: 44100”
 “RANGE_MIN: 22050”
 “RANGE_MAX: 96000”
 “.”

3.1.1 Loading an audio output driver

Use the following command to create a new audio output device for
the desired audio output system:

 CREATE AUDIO_OUTPUT_DEVICE <audio-output-type> [<param-list>]

 Where <audio-output-type> should be replaced by the desired audio
 output system and <param-list> by an optional list of driver
 specific parameters in form of “key1=val1 key2=val2 ...”, where
 character string values should be encapsulated into apostrophes (').
 Note that there might be drivers which require parameter(s) to be
 given with this command. Use the previously described commands in
 this chapter to get those informations.

 Possible Answers:

 “OK” -
 in case the driver was successfully loaded

 “WRN:<warningcode>:<warningmessage>” -
 in case the driver was loaded successfully, but there are
 noteworthy issue(s) related (e.g. sound card doesn't suport
 given hardware parameters and the driver is using fallback
 values), providing an appropriate warning code and warning
 message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

 Examples:

 C: “CREATE AUDIO_OUTPUT_DEVICE Alsa CARD='1,0' SAMPLERATE=96000”
 S: “OK”

 C: “CREATE AUDIO_OUTPUT_DEVICE Alsa”
 S: “OK”

Schoenebeck Expires - June 2004 [Page 10]

LinuxSampler Control Protocol May 2004

3.1.1 Unloading an audio output driver

Use the following command to destroy a created output device:

 DESTROY AUDIO_OUTPUT_DEVICE <audio-output-type>

 Where <audio-output-type> should be replaced by the audio output
 system name given by the “GET AVAILABLE_AUDIO_OUTPUT_TYPES” command.

 Possible Answers:

 “OK” -
 in case the driver was successfully unloaded

 “WRN:<warningcode>:<warningmessage>” -
 in case the driver was loaded successfully, but there are
 noteworthy issue(s) related (e.g. an audio over ethernet
 driver was unloaded but the other host might not be
 informed about this situation), providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “DESTROY AUDIO_OUTPUT_DEVICE Alsa”
 S: “OK”

3.1.1 Getting all loaded audio output drivers

Use the following command to list all currently loaded audio output
drivers, means all created audio output devices:

 GET AUDIO_OUTPUT_DEVICES

 Possible Answers:

 LinuxSampler will answer by sending comma separated names of
 all created audio output devices.

 Examples:

 C: “GET AUDIO_OUTPUT_DEVICES”
 S: “Jack”

 C: “GET AUDIO_OUTPUT_DEVICES”

Schoenebeck Expires - June 2004 [Page 11]

LinuxSampler Control Protocol May 2004

 S: “Alsa,Jack”

3.1.1 Getting current settings of an audio output driver

Use the following command to get current settings of a specific,
loaded audio output driver:

 GET AUDIO_OUTPUT_DEVICE INFO <audio-output-type>

Where <audio-output-type> is the name of the audio output driver
given by the “GET AVAILABLE_AUDIO_OUTPUT_TYPES” command.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. As some
 parameters might allow multiple values, character strings are
 encapsulated into apostrophes ('). At the moment the following
 information categories are defined (independently of driver):

 CHANNELS –
 amount of audio output channels this driver currently
 offers

 SAMPLERATE –
 playback sample rate the device uses

 ACTIVE -
 either true or false, if false then the audio driver is
 inactive and doesn't output any sound, nor do the
 sampler channels connected to this audio device render
 any audio

 The mentioned fields above don't have to be in particular
 order. The fields above are only those fields which are
 returned by all audio output drivers. Every audio output driver
 might have its own, additional driver specific parameters (see
 “GET AUDIO_OUTPUT_TYPE INFO” command) which are also returned
 by this command.

 Example:

 C: “GET AUDIO_OUTPUT_DEVICE INFO Alsa”
 S: “CHANNELS: 2”
 “SAMPLERATE: 44100”
 “ACTIVE: true”

Schoenebeck Expires - June 2004 [Page 12]

LinuxSampler Control Protocol May 2004

 “FRAGMENTS: 2”
 “FRAGMENTSIZE: 128”
 “CARD: '0,0'”
 “.”

3.1.1 Changing settings of audio output drivers

Use the following command to alter a specific setting of a created
audio output device:

 SET AUDIO_OUTPUT_DEVICE_PARAMETER <audio-type> <key> <value>

 or

 SET AUDIO_OUTPUT_DEVICE_PARAMETER <audio-type> <key>=<value>

 Where <audio-type> should be replaced by the name of the audio
 device, <key> by the name of the parameter and <value> by the new
 value for this parameter.

 Possible Answers:

 “OK” -
 in case setting was successfully changed

 “WRN:<warningcode>:<warningmessage>” -
 in case setting was cahnged successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

 Examples:

 C: “SET AUDIO_OUTPUT_DEVICE_PARAMETER Alsa FRAGMENTSIZE 128”
 S: “OK”

 C: “SET AUDIO_OUTPUT_DEVICE_PARAMETER Alsa FRAGMENTSIZE=128”
 S: “OK”

3.1.2 Getting informations about an audio channel

Use the following command to get informations about an audio
channel:

 GET AUDIO_OUTPUT_CHANNEL INFO <audio-output-type> <audio-chan>

Schoenebeck Expires - June 2004 [Page 13]

LinuxSampler Control Protocol May 2004

Where <audio-output-type> is the name of the audio output driver
and <audio-chan> the audio audio channel number.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following information categories are defined:

 NAME –
 arbitrary character string naming the channel
 (always returned by all audio channels)

 IS_MIX_CHANNEL –
 either true or false, a mixchannel is not a real,
 independent audio channel, but a virtual channel which
 is mixed to another real channel, this mechanism is
 needed for sampler engines which need more audio
 channels than the used audio system might be able to
 offer
 (always returned by all audio channels)

 MIX_CHANNEL_DESTINATION -
 reflects the real audio channel (of the same audio
 output device) this mix channel refers to, means where
 the audio signal actually will be routed / added to
 (only returned in case the audio channel is mix channel)

 The mentioned fields above don't have to be in particular
 order. The fields above are only those fields which are
 generally returned for the described cases by all audio
 channels regardless of the audio driver. Every audio channel
 might have its own, additional driver & channel specific
 parameters.

 Examples:

 C: “GET AUDIO_OUTPUT_CHANNEL INFO Alsa 1”
 S: “NAME: studio monitor left”
 “IS_MIX_CHANNEL: false”
 “.”

 C: “GET AUDIO_OUTPUT_CHANNEL INFO Alsa 3”
 S: “NAME: studio monitor left”
 “IS_MIX_CHANNEL: true”
 “MIX_CHANNEL_DESTINATION: 1”
 “.”

Schoenebeck Expires - June 2004 [Page 14]

LinuxSampler Control Protocol May 2004

 C: “GET AUDIO_OUTPUT_CHANNEL INFO Jack 1”
 S: “NAME: 'ardour (left)'”
 “IS_MIX_CHANNEL: false”
 “JACK_BINDINGS: 'ardour:0'
 “.”

3.1.1 Getting informations about specific audio channel parameter

Use the following command to get detailed informations about a
specific audio channel parameter:

 GET AUDIO_OUTPUT_CHANNEL_PARAMETER INFO <audio-t> <chan> <param>

Where <audio-t> is the name of the audio output device as returned
by the “GET AVAILABLE_AUDIO_OUTPUT_TYPES” command, <chan> the audio
channel number and <param> a specific channel parameter name for
which information should be obtained (as returned by the “GET
AUDIO_OUTPUT_CHANNEL INFO” command).

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. There are
 informations which are always returned, independently of the
 given channel parameter and there are optional informations
 which are only shown dependently to the given audio channel. At
 the moment the following information categories are defined:

 DESCRIPTION –
 arbitrary text describing the purpose of the parameter
 (always returned)

 FIX -
 either true or false, if true then this parameter is
 read only / cannot be altered
 (always returned)

 MULTIPLICITY -
 either true or false, defines if this parameter allows
 only one value or a list of values, where true means
 multiple values and false only a single value allowed
 (always returned)

 RANGE_MIN –
 defines lower limit of the allowed value range for this

Schoenebeck Expires - June 2004 [Page 15]

LinuxSampler Control Protocol May 2004

 parameter, can be an integer value as well as a dotted
 number
 (optionally returned, dependent to driver & channel
 parameter, but always in conjunction with RANGE_MAX)

 RANGE_MAX –
 defines upper limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number
 (optionally returned, dependent to driver & channel
 parameter, but always in conjunction with RANGE_MIN

 POSSIBILITES –
 comma separated list of possible values for this
 parameter, character strings are encapsulated into
 apostrophes
 (optionally returned, dependent to driver & channel
 parameter)

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET AUDIO_OUTPUT_CHANNEL_PARAMETER INFO Jack 0 JACK_BINDINGS”
 S: “DESCRIPTION: bindings to other Jack clients”
 “FIX: false”
 “MULTIPLICITY: true”
 “POSSIBILITES: 'PCM:0','PCM:1','ardour:0','ardour:1'”
 “.”

3.1.1 Changing settings of audio output channels

Use the following command to alter a specific setting of audio
output channel:

 SET AUDIO_OUTPUT_CHANNEL_PARAMETER <audio-t> <chn> <key> <value>

 or

 SET AUDIO_OUTPUT_CHANNEL_PARAMETER <audio-t> <chn> <key>=<value>

 Where <audio-t> should be replaced by the name of the audio
 device, <chn> by the audio channel number, <key> by the name of the
 parameter and <value> by the new value for this parameter.

 Possible Answers:

 “OK” -

Schoenebeck Expires - June 2004 [Page 16]

LinuxSampler Control Protocol May 2004

 in case setting was successfully changed

 “WRN:<warningcode>:<warningmessage>” -
 in case setting was cahnged successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

 Examples:

 C: “SET AUDIO_OUTPUT_CHANNEL PARAMETER Jack 0 JACK_BINDINGS 'PCM:0'”
 S: “OK”

 C: “SET AUDIO_OUTPUT_CHANNEL PARAMETER Jack 0 JACK_BINDINGS='PCM:0'”
 S: “OK”

 C: “SET AUDIO_OUTPUT_CHANNEL PARAMETER Jack 0 NAME 'monitor left'”
 S: “OK”

3.2 Configuring MIDI input drivers

Drivers in LinuxSampler are called devices. You can use multiple
devices simultaniously, e.g. to use MIDI over ethernet as MIDI
input on one sampler channel and Alsa as MIDI input on another
sampler channel. Usually these devices will be created
automatically by LinuxSampler when you select an MIDI input type on
a sampler channel and the respective device was not created yet,
but this is not always possible, because some drivers might need
explicit parameters at creation time.

Instead of defining commands and parameters for each driver
individually, all possible parameters, their meanings and possible
values have to be obtained at runtime. This makes the protocol a
bit abstract, but has the advantage, that frontends can be written
independently of what drivers are implemented and what parameters
these drivers are actually offering. Commands for configuring MIDI
input devices are pretty much the same as the commands for
configuring audio output drivers, already described in the last
chapter.

3.2.1 Getting all available MIDI input drivers

Use the following command to list all MIDI input drivers currently
available for the LinuxSampler instance:

Schoenebeck Expires - June 2004 [Page 17]

LinuxSampler Control Protocol May 2004

 GET AVAILABLE_MIDI_INPUT_TYPES

 Possible Answers:

 LinuxSampler will answer by sending comma separated character
 strings symbolizing the available MIDI input drivers.

 Example:

 C: “GET AVAILABLE_MIDI_INPUT_TYPES”
 S: “Alsa,Jack”

3.2.1 Getting informations about a specific MIDI input driver

Use the following command to get detailed informations about a
specific MIDI input driver:

 GET MIDI_INPUT_TYPE INFO <midi-input-type>

Where <midi-input-type> is the name of the MIDI input driver.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following information categories are defined:

 DESCRIPTION –
 arbitrary description text about the MIDI input driver

 VERSION -
 arbitrary character string regarding the driver's
 version

 PARAMETERS –
 comma separated list of all parameters available for
 the given MIDI input driver

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET MIDI_INPUT_TYPE INFO Alsa”
 S: “DESCRIPTION: Advanced Linux Sound Architecture”
 “VERSION: 1.0”

Schoenebeck Expires - June 2004 [Page 18]

LinuxSampler Control Protocol May 2004

 “PARAMETERS: ALSA_SEQ_BINDINGS”
 “.”

3.2.1 Getting informations about specific MIDI input driver parameter

Use the following command to get detailed informations about a
specific parameter of a specific MIDI input driver:

 GET MIDI_INPUT_TYPE_PARAMETER INFO <midi-t> <param> [<deplist>]

Where <midi-t> is the name of the MIDI input driver, <param> a
specific parameter this driver offers.

Where <midi-t> is the name of the MIDI input driver as returned by
the “GET AVAILABLE_MIDI_INPUT_TYPES” command, <param> a specific
parameter name for which information should be obtained (as
returned by the “GET MIDI_INPUT_TYPE INFO” command) and <deplist>
is an optional list of parameters on which the sought parameter
<param> depends on, <deplist> is a key-value pair list in form of
“key1=val1 key2=val2 ...”, where character string values are
encapsulated into apostrophes ('). Arguments given with <deplist>
which are not dependency parameters of <param> will be ignored,
means the frontend application can simply put all parameters in
<deplist> with the values selected by the user.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. There are
 informations which are always returned, independent of the
 given driver parameter and there are optional informations
 which are only shown dependent to given driver parameter. At
 the moment the following information categories are defined:

 DESCRIPTION –
 arbitrary text to describe the purpose of the parameter
 (always returned, no matter which driver parameter)

 MANDATORY -
 either true or false, defines if this parameter must be
 given when the device is to be created by the
 'CREATE MIDI_INPUT_DEVICE' command
 (always returned, no matter which driver parameter)

 FIX -
 either true or false, defines if this parameter can be

Schoenebeck Expires - June 2004 [Page 19]

LinuxSampler Control Protocol May 2004

 changed at any time, once the device is created by the
 'CREATE MIDI_INPUT_DEVICE' command
 (always returned, no matter which driver parameter)

 MULTIPLICITY -
 either true or false, defines if this parameter allows
 only one value or a list of values, where true means
 multiple values and false only a one value allowed
 (always returned, no matter which driver parameter)

 DEPENDS -
 comma separated list of paramters this parameter depends
 on, means the values for fields 'DEFAULT', 'RANGE_MIN',
 'RANGE_MAX' and 'POSSIBILITIES' might depend on these
 listed parameters
 (optionally returned, dependent to driver parameter)

 DEFAULT –
 reflects the default value for this parameter which is
 used when the device is created and not explicitly
 defined with the 'CREATE MIDI_INPUT_DEVICE' command,
 in case of MULTIPLCITY=true, this is a comma separated
 list, that's why character strings are encapsulated into
 apostrophes (')
 (optional returned, dependent to driver parameter)

 RANGE_MIN –
 defines lower limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number
 (optional returned, dependent to driver parameter, but
 always in conjunction with RANGE_MAX)

 RANGE_MAX –
 defines upper limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number
 (optional returned, dependent to driver parameter, but
 always in conjunction with RANGE_MIN)

 POSSIBILITES –
 comma separated list of possible values for this
 parameter, character strings are encapsulated into
 (optional returned, dependent to driver parameter)

 The mentioned fields above don't have to be in particular order.

 Example:

Schoenebeck Expires - June 2004 [Page 20]

LinuxSampler Control Protocol May 2004

 C: “GET MIDI_INPUT_TYPE_PARAMETER INFO Alsa ALSA_SEQ_BINDINGS”
 S: “DESCRIPTION: Bindings to other Alsa sequencer clients”
 “MANDATORY: false”
 “FIX: false”
 “MULTIPLICITY: true”
 “DEFAULT: 'NULL'”
 “POSSIBILITES: 'NULL','64:0,'68:0','68:1'”
 “.”

3.2.1 Loading an MIDI input driver

Use the following command to create a new MIDI input device for
the desired MIDI input system:

 CREATE MIDI_INPUT_DEVICE <midi-input-type> [<param-list>]

 Where <midi-input-type> should be replaced by the desired MIDI input
 system and <param-list> by an optional list of driver specific
 parameters in form of “key1=val1 key2=val2 ...”, where
 character string values should be encapsulated into apostrophes (').
 Note that there might be drivers which require parameter(s) to be
 given with this command. Use the previously described commands in
 this chapter to get those informations.

 Possible Answers:

 “OK” -
 in case the driver was successfully loaded

 “WRN:<warningcode>:<warningmessage>” -
 in case the driver was loaded successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “CREATE MIDI_INPUT_DEVICE Alsa”
 S: “OK”

3.2.1 Unloading an MIDI input driver

Use the following command to destroy a created MIDI input device:

Schoenebeck Expires - June 2004 [Page 21]

LinuxSampler Control Protocol May 2004

 DESTROY MIDI_INPUT_DEVICE <midi-input-type>

 Where <midi-input-type> should be replaced by the midi input
 system.

 Possible Answers:

 “OK” -
 in case the driver was successfully unloaded

 “WRN:<warningcode>:<warningmessage>” -
 in case the driver was loaded successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “DESTROY MIDI_INPUT_DEVICE Alsa”
 S: “OK”

3.2.1 Getting all loaded MIDI input drivers

Use the following command to list all currently loaded MIDI input
drivers, means all created MIDI input devices:

 GET MIDI_INPUT_DEVICES

 Possible Answers:

 LinuxSampler will answer by sending comma separated names of
 all created MIDI input devices.

 Examples:

 C: “GET MIDI_INPUT_DEVICES”
 S: “ALSA”

 C: “GET MIDI_INPUT_DEVICES”
 S: “Alsa,Jack”

3.2.1 Getting current settings of a MIDI input driver

Use the following command to get current settings of a specific,

Schoenebeck Expires - June 2004 [Page 22]

LinuxSampler Control Protocol May 2004

loaded MIDI input driver:

 GET MIDI_INPUT_DEVICE INFO <midi-input-type>

Where <midi-input-type> is the name of the MIDI input driver.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. As some
 parameters might allow multiple values, character strings are
 encapsulated into apostrophes ('). At the moment the following
 information categories are defined (independent of driver):

 ACTIVE -
 either true or false, if false then the MIDI driver is
 inactive and doesn't listen to any incoming MIDI events
 and thus doesn't forward them to connected sampler
 channels

 The field above is only the one which is returned by all MIDI
 input drivers. Every MIDI input driver might have its own,
 additional driver specific parameters which are also returned
 by this command.

 Example:

 C: “GET MIDI_INPUT_DEVICE INFO Alsa”
 S: “ACTIVE: true”
 “.”

3.2.2 Changing settings of audio output drivers

Use the following command to alter a specific setting of a created
MIDI input device:

 SET MIDI_INPUT_DEVICE_PARAMETER <midi-type> <key> <value>

 or

 SET MIDI_INPUT_DEVICE_PARAMETER <midi-type> <key>=<value>

 Where <midi-type> should be replaced by the name of the MIDI input
 device, <key> by the name of the parameter and <value> by the new
 value for this parameter.

Schoenebeck Expires - June 2004 [Page 23]

LinuxSampler Control Protocol May 2004

 Possible Answers:

 “OK” -
 in case setting was successfully changed

 “WRN:<warningcode>:<warningmessage>” -
 in case setting was cahnged successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

 Examples:

 C: “SET MIDI_INPUT_DEVICE PARAMETER Alsa ACTIVE false”
 S: “OK”

 C: “SET MIDI_INPUT_DEVICE PARAMETER Alsa ACTIVE=false”
 S: “OK”

3.2.3 Getting informations about a MIDI port

Use the following command to get informations about a MIDI port:

 GET MIDI_INPUT_PORT INFO <midi-input-type> <midi-port>

Where <midi-input-type> is the name of the MIDI inpupt driver and
<midi-port> the MIDI input port number.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following information categories are defined:

 NAME –
 arbitrary character string naming the port

 The field above is only the one which is returned by all MIDI
 ports regardless of the MIDI driver & port. Every MIDI port
 might have its own, additional driver & port specific
 parameters.

 Example:

Schoenebeck Expires - June 2004 [Page 24]

LinuxSampler Control Protocol May 2004

 C: “GET MIDI_INPUT_PORT INFO Alsa 0”
 S: “NAME: Masterkeyboard”
 “ALSA_SEQ_BINDINGS: '64:0'”
 “.”

3.2.1 Getting informations about specific MIDI port parameter

Use the following command to get detailed informations about a
specific MIDI port parameter:

 GET MIDI_INPUT_PORT_PARAMETER INFO <midi-t> <port> <param>

Where <midi-t> is the name of the MIDI input device as returned by
the “GET AVAILABLE_MIDI_INPUT_TYPES” command, <port> the MIDI port
number and <param> a specific port parameter name for which
information should be obtained (as returned by the “GET
MIDI_INPUT_PORT INFO” command).

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. There are
 informations which are always returned, independently of the
 given channel parameter and there are optional informations
 which are only shown dependently to the given MIDI port. At the
 moment the following information categories are defined:

 DESCRIPTION –
 arbitrary text describing the purpose of the parameter
 (always returned)

 FIX -
 either true or false, if true then this parameter is
 read only / cannot be altered
 (always returned)

 MULTIPLICITY -
 either true or false, defines if this parameter allows
 only one value or a list of values, where true means
 multiple values and false only a single value allowed
 (always returned)

 RANGE_MIN –
 defines lower limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted

Schoenebeck Expires - June 2004 [Page 25]

LinuxSampler Control Protocol May 2004

 number
 (optionally returned, dependent to driver & port
 parameter, but always in conjunction with RANGE_MAX)

 RANGE_MAX –
 defines upper limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number
 (optionally returned, dependent to driver & port
 parameter, but always in conjunction with RANGE_MIN

 POSSIBILITES –
 comma separated list of possible values for this
 parameter, character strings are encapsulated into
 apostrophes
 (optionally returned, dependent to driver & port
 parameter)

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET MIDI_INPUT_PORT_PARAMETER INFO Alsa 0 ALSA_SEQ_BINDINGS”
 S: “DESCRIPTION: bindings to other Alsa sequencer clients”
 “FIX: false”
 “MULTIPLICITY: true”
 “POSSIBILITES: '64:0','68:0','68:1'”
 “.”

3.2.1 Changing settings of MIDI input ports

Use the following command to alter a specific setting of a MIDI
input port:

 SET MIDI_INPUT_PORT PARAMETER <midi-t> <port> <key> <value>

 or

 SET MIDI_INPUT_PORT PARAMETER <midi-t> <port> <key>=<value>

 Where <midi-t> should be replaced by the name of the MIDI device,
 <port> by the MIDI port number, <key> by the name of the parameter
 and <value> by the new value for this parameter.

 Possible Answers:

 “OK” -
 in case setting was successfully changed

Schoenebeck Expires - June 2004 [Page 26]

LinuxSampler Control Protocol May 2004

 “WRN:<warningcode>:<warningmessage>” -
 in case setting was cahnged successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

 Examples:

 C: “SET MIDI_INPUT_PORT PARAMETER Alsa 0 ALSA_SEQ_BINDINGS 'PCM:0'”
 S: “OK”

 C: “SET MIDI_INPUT_PORT PARAMETER Alsa 0 ALSA_SEQ_BINDINGS='PCM:0'”
 S: “OK”

 C: “SET MIDI_INPUT_PORT PARAMETER Alsa 0 NAME='My Masterkeyboard'”
 S: “OK”

3.3 Configuring sampler channels

The following commands describe how to add and remove sampler
channels, deploy sampler engines, load instruments and connect
sampler channels to MIDI and audio devices.

3.3.1 Loading an instrument

An instrument file can be loaded and assigned to a sampler channel
by the following command:

 LOAD INSTRUMENT <filename> <instr-index> <sampler-channel>

 Where <filename> is the name of the instrument file on the
 LinuxSampler instance's host system, <instr-index> the index of the
 instrument in the instrument file and <sampler-channel> is the
 number of the sampler channel the instrument should be assigned to.
 Each sampler channel can only have one instrument.

 Possible Answers:

 “OK” -
 in case the instrument was successfully loaded

 “WRN:<warningcode>:<warningmessage>” -

Schoenebeck Expires - June 2004 [Page 27]

LinuxSampler Control Protocol May 2004

 in case the instrument was loaded successfully, but there
 are noteworthy issue(s) related (e.g. Engine doesn't support
 one or more patch parameters provided by the loaded
 instrument file), providing an appropriate warning code and
 warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.2 Loading a sampler engine

A sample engine can be deployed and assigned to a specific sampler
 channel by the following command:

 LOAD ENGINE <engine-name> <sampler-channel>

 Where <engine-name> is usually the C++ class name of the engine
 implementation and <sampler-channel> the sampler channel the
 deployed engine should be assigned to. Even if the respective
 sampler channel has already a deployed engine with that engine
 name, a new engine instance will be assigned to the sampler channel.

 Possible Answers:

 “OK” -
 in case the engine was successfully deployed

 “WRN:<warningcode>:<warningmessage>” -
 in case the engine was deployed successfully, but there
 are noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.3 Current number of sampler channels

The number of sampler channels can change on runtime. To get the
 current amount of sampler channels, the frontend can send the
 following command:

 GET CHANNELS

 Possible Answers:

Schoenebeck Expires - June 2004 [Page 28]

LinuxSampler Control Protocol May 2004

 LinuxSampler will answer returning the number of channels.

 Example:

 C: “GET CHANNELS”
 S: “32”

3.3.4 Adding a new sampler channel

A new sampler channel can be added to the end of the sampler
 channel list by sending the following command:

 ADD CHANNEL

 This will increment the sampler channel count by one and the new
 sampler channel will be appended to the end of the sampler channel
 list. The frontend should send the respective, related commands
 right after to e.g. load an engine, load an instrument and setting
 input, output method and evtl. other commands to initialize the new
 channel. The frontend should use the sampler channel returned by
 the answer of this command to perform the previously recommended
 commands, to avoid race conditions e.g. with other frontends that
 might also have sent an “ADD CHANNEL” command.

 Possible Answers:

 “OK[<sampler-channel>]” -
 in case a new sampler channel could be added, where
 <sampler-channel> reflects the channel number of the new
 created sampler channel which should the be used to set up
 the sampler channel by sending subsequent intialization
 commands

 “WRN:<warningcode>:<warningmessage>” -
 in case a new channel was added succesfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.5 Removing a sampler channel

A sampler channel can be removed by sending the following command:

 REMOVE CHANNEL <sampler-channel>

Schoenebeck Expires - June 2004 [Page 29]

LinuxSampler Control Protocol May 2004

 This will decrement the sampler channel count by one and also
 decrement the channel numbers of all subsequent sampler channels by
 one.

 Possible Answers:

 “OK” -
 in case the given sampler channel could be removed

 “WRN:<warningcode>:<warningmessage>” -
 in case the given channel was removed, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.6 Getting all available engines

The frontend can ask for all available engines by sending the
 following command:

 GET AVAILABLE_ENGINES

 Possible Answers:

 LinuxSampler will answer by sending a comma separated character
 string of the engines' C++ class names.

 Example:

 C: “GET AVAILABLE_ENGINES”
 S: “GigEngine,AkaiEngine,DLSEngine,JoesCustomEngine”

3.3.7 Getting informations about an engine

The frontend can ask for informations about a specific engine by
 sending the following command:

 GET ENGINE INFO <engine-name>

 Where <engine-name> is usually the C++ class name of the engine
 implementation.

Schoenebeck Expires - June 2004 [Page 30]

LinuxSampler Control Protocol May 2004

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following categories are defined:

 DESCRIPTION –
 arbitrary description text about the engine

 VERSION -
 arbitrary character string regarding the engine's
 version

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET ENGINE INFO JoesCustomEngine”
 S: “DESCRIPTION: this is Joe's custom sampler engine”
 “VERSION: testing-1.0”
 “.”

3.3.8 Getting sampler channel informations

The frontend can ask for the current settings of a sampler channel
 by sending the following command:

 GET CHANNEL INFO <sampler-channel>

 Where <sampler-channel> is the sampler channel number the frontend
 is interested in.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the settings category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that setting category. At the
 moment the following categories are defined:

 ENGINE_NAME –
 name of the engine that is deployed on the sampler
 channel, “<NONE>” if there's no engine deployed yet for
 this sampler channel

 AUDIO_OUTPUT_TYPE –

Schoenebeck Expires - June 2004 [Page 31]

LinuxSampler Control Protocol May 2004

 output system which is currently used to output the
 audio signal (at the moment either “ALSA” or “JACK”)

 AUDIO_OUTPUT_CHANNELS –
 number of output channels the sampler channel offers
 (dependent to used sampler engine and loaded instrument)

 AUDIO_OUTPUT_ROUTING -
 comma separated list which reflects to which audio
 channel of the selected audio output device each
 sampler output channel is routed to, e.g. “0,3” would
 mean the engine's output channel 0 is routed to channel
 0 of the audio output device and the engines's output
 channel 1 is routed to the channel 3 of the audio
 output device

 INSTRUMENT_FILE –
 the file name of the loaded instrument, “<NONE>” if
 there's no instrument yet loaded for this sampler
 channel

 INSTRUMENT_NR -
 the instrument index number of the loaded instrument

 MIDI_INPUT_TYPE –
 at the moment only “ALSA”, but will change in future

 MIDI_INPUT_PORT –
 port number of the MIDI input device

 MIDI_INPUT_CHANNEL –
 the MIDI input channel number this sampler channel
 should listen to or ALL to listen on all MIDI channels

 VOLUME –
 optionally dotted number for the channel volume factor
 (where a value < 1.0 means attenuation and a value >
 1.0 means amplification)

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET CHANNEL INFO 34”
 S: “ENGINE_NAME: GigEngine”
 “VOLUME: 1.0”
 “AUDIO_OUTPUT_TYPE: ALSA”
 “AUDIO_OUTPUT_CHANNELS: 2”
 “AUDIO_OUTPUT_ROUTING: 0,1”

Schoenebeck Expires - June 2004 [Page 32]

LinuxSampler Control Protocol May 2004

 “INSTRUMENT_FILE: /home/joe/FazioliPiano.gig”
 “INSTRUMENT_NR: 0”
 “MIDI_INPUT_TYPE: ALSA”
 “MIDI_INPUT_PORT: 0“
 “MIDI_INPUT_CHANNEL: 5”
 “.”

3.3.9 Current number of active voices

The frontend can ask for the current number of active voices on a
 sampler channel by sending the following command:

 GET CHANNEL VOICE_COUNT <sampler-channel>

 Where <sampler-channel> is the sampler channel number the frontend
 is interested in.

 Possible Answers:

 LinuxSampler will answer by returning the number of active
 voices on that channel.

3.3.10 Current number of active disk streams

The frontend can ask for the current number of active disk streams
 on a sampler channel by sending the following command:

 GET CHANNEL STREAM_COUNT <sampler-channel>

 Where <sampler-channel> is the sampler channel number the frontend
 is interested in.

 Possible Answers:

 LinuxSampler will answer by returning the number of active
 disk streams on that channel in case the engine supports disk
 streaming, if the engine doesn't support disk streaming it will
 return “NA” for not available.

3.3.11 Current fill state of disk stream buffers

The frontend can ask for the current fill state of all disk streams
 on a sampler channel by sending the following command:

 GET CHANNEL BUFFER_FILL BYTES <sampler-channel>

Schoenebeck Expires - June 2004 [Page 33]

LinuxSampler Control Protocol May 2004

 to get the fill state in bytes or

 GET CHANNEL BUFFER_FILL PERCENTAGE <sampler-channel>

 to get the fill state in percent, where <sampler-channel> is the
 sampler channel number the frontend is interested in.

 Possible Answers:

 LinuxSampler will either answer by returning a comma separated
 string with the fill state of all disk stream buffers on that
 channel or an empty line if there are no active disk streams or
 “NA” for *not available* in case the engine which is deployed
 doesn't support disk streaming. Each entry in the answer list
 will begin with the stream's ID in brackets followed by the
 numerical representation of the fill size (either in bytes or
 percentage). Note: due to efficiency reasons the fill states in
 the response are not in particular order, thus the frontend has
 to sort them by itself if necessary.

 Example:

 C: “GET CHANNEL BUFFER_FILL BYTES 4”
 S: “[115]420500,[116]510300,[75]110000,[120]230700”

 C: “GET CHANNEL BUFFER_FILL PERCENTAGE 4”
 S: “[115]90%,[116]98%,[75]40%,[120]62%”

 C: “GET CHANNEL BUFFER_FILL PERCENTAGE 4”
 S: “”

3.3.12 Setting audio output type

The frontend can alter the audio output type on a specific sampler
 channel by sending the following command:

 SET CHANNEL AUDIO_OUTPUT_TYPE <sampler-channel> <audio-output-type>

 Where <audio-output-type> is currently either “ALSA” or “JACK” and
 <sampler-channel> is the respective sampler channel number.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warningcode>:<warningmessage>” -
 if audio output type was set, but there are noteworthy

Schoenebeck Expires - June 2004 [Page 34]

LinuxSampler Control Protocol May 2004

 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.13 Setting audio output channel

The frontend can alter the audio output channel on a specific
 sampler channel by sending the following command:

 SET CHANNEL AUDIO_OUTPUT_CHANNEL <sampler-chan> <audioout> <audioin>

 Where <sampler-chan> is the sampler channel, <audioout> is the
 sampler channel's audio output channel which should be
 rerouted and <audioin> the audio channel of the selected audio
 output device where <audioout> should be routed to.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warningcode>:<warningmessage>” -
 if audio output channel was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.14 Setting MIDI input port

The frontend can alter the input MIDI port on a specific sampler
 channel by sending the following command:

 SET CHANNEL MIDI_INPUT_PORT <sampler-channel> <midi-input-port>

 Where <midi-input-port> is a MIDI input port number of the
 MIDI input device connected to the sampler channel given by
 <sampler-channel>.

 Possible Answers:

 “OK” -

Schoenebeck Expires - June 2004 [Page 35]

LinuxSampler Control Protocol May 2004

 on success

 “WRN:<warningcode>:<warningmessage>” -
 if MIDI input port was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.15 Setting MIDI input channel

The frontend can alter the MIDI channel a sampler channel should
 listen to by sending the following command:

 SET CHANNEL MIDI_INPUT_CHANNEL <sampler-channel> <midi-input-chan>

 Where <midi-input-chan> is the new MIDI input channel where
 <sampler-channel> should listen to or ALL to listen on all 16 MIDI
 channels.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warningcode>:<warningmessage>” -
 if MIDI input channel was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.16 Setting channel volume

The frontend can alter the volume of a sampler channel by sending
 the following command:

 SET CHANNEL VOLUME <sampler-channel> <volume>

 Where <volume> is an optionally dotted positive number (a value
 smaller than 1.0 means attenutation, whereas a value greater than
 1.0 means amplification) and <sampler-channel> defines the sampler
 channel where this volume factor should be set.

Schoenebeck Expires - June 2004 [Page 36]

LinuxSampler Control Protocol May 2004

 Possible Answers:

 “OK” -
 on success

 “WRN:<warningcode>:<warningmessage>” -
 if channel volume was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.17 Resetting a sampler channel

The frontend can reset a particular sampler channel by sending the
following command:

 RESET CHANNEL <sampler-channel>

 Where <sampler-channel> defines the sampler channel to be reset.
 This will cause the engine on that sampler channel, its voices and
 eventually disk streams and all control and status variables to be
 reset.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warningcode>:<warningmessage>” -
 if channel was reset, but there are noteworthy issue(s)
 related, providing an appropriate warning code and warning
 message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.18 Register frontend for receiving UDP event messages

The frontend can register itself to the LinuxSampler application to
 be informed about noteworthy events by sending this command:

 SUBSCRIBE NOTIFICATION <udp-port>

Schoenebeck Expires - June 2004 [Page 37]

LinuxSampler Control Protocol May 2004

 Where <udp-port> is the UDP port number on the frontend's host on
 which the frontend will listen to. The frontend has to open, listen
 and react on that port before it tries to register itself for
 NOTIFICATION, because the LinuxSampler instance will send a PING
 packet to test if the UDP is actually reachable and the frontend is
 listening on that port. The frontend will then immediately have to
 answer by sending a PONG packet, else the SUBSCRIBE NOTIFICATION
 command will fail (see UDP chapter for PING and PONG packets). The
 LinuxSampler instance will periodically send PING packets on which
 the frontend has to answer, else LinuxSampler assumes the frontend
 to be not available and will stop to send notification / event
 messages.

 Possible Answers:

 “OK[<session-id>]” -
 on success, where <session-id> will be replaced by a
 character string reflecting the ID needed for unsubscription

 “WRN:<warningcode>:<warningmessage>” -
 if registration succeeded, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.19 Deregister frontend for not receiving UDP event messages anymore

The frontend can deregister itself if it doesn't want to receive UDP
 event packets anymore by sending the following command:

 UNSUBSCRIBE NOTIFICATION <session-id>

 Where <session-id> should be replaced by the ID returned from the
 “SUBSCRIBE NOTIFICATION” command (see 3.17).

 Possible Answers:

 “OK” -
 on success

 “WRN:<warningcode>:<warningmessage>” -
 if deregistration succeeded, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

Schoenebeck Expires - June 2004 [Page 38]

LinuxSampler Control Protocol May 2004

 “ERR:<errorcode>:<errormessage>” -
 in case it failed, providing an appropriate error code and
 error message

3.3.20 Close client connection

The client can close its network connection to LinuxSampler by
sending the following command:

 QUIT

 This is probably more interesting for manual telnet connections to
 LinuxSampler than really useful for a frontend implementation.

4. Command Syntax

The following are the LSCP (LinuxSampler control protocol) commands:

 ADD <SP> CHANNEL

 GET <SP> <get-instruction>

 LOAD <SP> <load-instruction>

 REMOVE <SP> CHANNEL <SP> <sampler-channel>

 SET <SP> CHANNEL <SP> <set-chan-instruction>

 RESET <SP> CHANNEL <SP> <sampler-channel>

 SUBSCRIBE <SP> NOTIFICATION <SP> <udp-port>

 UNSUBSCRIBE <SP> NOTIFICATION <SP> <session-id>

 QUIT

The syntax of the above argument fields is given below using Backus-
Naur Form (BNF as described in RFC-2234 [2]) where applicable.

<get-instruction> ::=
 AVAILABLE_ENGINES |
 CHANNELS |
 CHANNEL <SP> INFO <SP> <sampler-channel> |

Schoenebeck Expires - June 2004 [Page 39]

LinuxSampler Control Protocol May 2004

 CHANNEL <SP> BUFFER_FILL <SP> <buffer-size-type> <SP>
 <sampler-channel> |
 CHANNEL <SP> STREAM_COUNT <SP> <sampler-channel> |
 CHANNEL <SP> VOICE_COUNT <SP> <sampler-channel> |
 ENGINE <SP> INFO <SP> <engine-name>

<load-instruction> ::=
 INSTRUMENT <SP> <load-instr-args> |
 ENGINE <SP> <load-engine-args>

<sampler-channel> ::= <number>

<set-chan-instruction> ::=
 AUDIO_OUTPUT_CHANNEL <SP> <sampler-channel> <SP>
 <audio-output-channel> |
 AUDIO_OUTPUT_TYPE <SP> <sampler-channel> <SP>
 <audio-output-type> |
 MIDI_INPUT_PORT <SP> <sampler-channel> <SP>
 <midi-input-port> |
 MIDI_INPUT_CHANNEL <SP> <sampler-channel> <SP>
 <midi-input-channel> |
 MIDI_INPUT_TYPE <SP> <sampler-channel> <SP>
 <midi-input-type> |
 VOLUME <SP> <sampler-channel> <SP> <volume>

<udp-port> ::= <number>

<session-id> ::= <string>

<buffer-size-type> ::= BYTES | PERCENTAGE

<engine-name> ::= <cpp-classname>

<load-instr-args> ::=
 <filename> <SP> <instr-index> <SP> <sampler-channel>

<load-engine-args> ::= <engine-name> <SP> <sampler-channel>

<audio-output-channel> ::= <number>

<audio-output-type> ::= ALSA | JACK

<midi-input-port> ::= <string>

<midi-input-channel> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
 11 | 12 | 13| 14 | 15 | 16

<midi-input-type> ::= ALSA

Schoenebeck Expires - June 2004 [Page 40]

LinuxSampler Control Protocol May 2004

<volume> ::= <dotnum>

<cpp-classname> ::= class name as defined by the C++ programming
 language

<filename> ::= <string>

<string> ::= <char> | <char> <string>

<char> ::= <c> | "\" <x>

<c> ::= any one of the 128 ASCII characters, but not any
 <special> or <SP>

<special> ::= "<" | ">" | ";" | ":" | "&" | "{" | "}" | the control
 characters (ASCII codes 0 through 31 inclusive and 127)

<dotnum> ::= <snum> "." <number>

<number> ::= <d> | <d> <number>

<d> ::= any one of the ten digits 0 through 9

<snum> ::= arbitrary number of digits representing a decimal
 integer value in the range including 0 to infinity

<CRLF> ::= <CR> <LF>

<CR> ::= the carriage return character (ASCII code 13)

<LF> ::= the line feed character (ASCII code 10)

<SP> ::= the space character (ASCII code 32)

<x> ::= any one of the 128 ASCII characters (no exceptions)

<epsilon> ::= empty input

Note that command lines have to be <CRLF> terminated, thus the total
message set / command set is defined as:

<input> ::= <epsilon> | <input> <line>

<line> ::= <CRLF> | <command> <CRLF>

where <command> is one of the command lines as defined in the

Schoenebeck Expires - June 2004 [Page 41]

LinuxSampler Control Protocol May 2004

beginning of this section.

5. Events and special UDP packets

This chapter will describe all currently defined UDP packets sent
by LinuxSampler.

5.1 Number of sampler channels changed

In this case LinuxSampler will send the following packet:

 “CHANGE CHANNELS <channels>”

 Where <channels> will be reaplaced by the new number of sampler
 channels.

5.2 Number of active voices changed

In this case LinuxSampler will send a packet with following shape:

 CHANGE CHANNEL VOICE_COUNT <sampler-channel> <voices>

 Where <sampler-channel> will be replaced by the sampler channel the
 voice count change occurred and <voices> by the new number of
 active voices on that channel.

5.3 Number of active disk streams changed

In this case LinuxSampler will send a packet with following shape:

 CHANGE CHANNEL STREAM_COUNT <sampler-channel> <streams>

 Where <sampler-channel> will be replaced by the sampler channel the
 stream count change occurred and <stream> by the new number of
 active disk streams on that channel.

5.4 Disk stream buffer fill state changed

In this case LinuxSampler will send a packet with following shape:

 CHANGE CHANNEL BUFFER_FILL <sampler-channel>

 Where <sampler-channel> will be replaced by the sampler channel the
 buffer fill state change occurred. The frontend will have to send

Schoenebeck Expires - June 2004 [Page 42]

LinuxSampler Control Protocol May 2004

 the respective command to actually get the fill state values. This
 is unavoidable due to the packet size limit of UDP.

5.5 Channel informations changed

In this case LinuxSampler will send a packet with following shape:

 CHANGE CHANNEL INFO <sampler-channel>

 Where <sampler-channel> will be replaced by the sampler channel the
 channel info change occurred. The frontend will have to send
 the respective command to actually get the channel info. This is
 unavoidable due to the packet size limit of UDP.

5.6 Special packet PING

Sense behind this packet is to check if the frontend is (still)
 listening on it's registered UDP port. This special packet has this
 shape:

 PING <udp-port> <string>

 Where <string> is an arbitrary character string that has to be
 confirmed by the frontend by sending a PONG UDP packet to the UDP
 port given by <udp-port> to LinuxSampler's host IP address.

5.7 Special packet PONG

This packet has to be returned by the frontend in reaction to a
 PING packet received from LinuxSampler. A PONG packet looks like
 this:

 PONG <string>

 Where <string> is a character string transmitted with PING, which
 should be send in order to confirm the PING packet.

 Example:

 S: “PING 2067 ahj_89zdiQ”
 C: “PONG ahj_89zdiQ” (sent to port 2067 of LinuxSampler's
 host)

Schoenebeck Expires - June 2004 [Page 43]

LinuxSampler Control Protocol May 2004

6. Event Syntax

The following are the defined event messages sent via UDP (only in
case the frontend registered itself to receive UDP event packets):

 CHANGE <SP> <event-arg>

 PING <SP> <udp-port> <SP> <string>

 PONG <SP> <string>

 The syntax of the above argument fields is given below using Backus-
 Naur Form (BNF as described in RFC-2234 [3]) where applicable.

 <event-arg> ::=
 CHANNELS <SP> <channels> |
 CHANNEL <SP> VOICE_COUNT <SP> <sampler-channel> <SP>
 <voice-count> |
 CHANNEL <SP> STREAM_COUNT <SP> <sampler-channel>
 <SP> <stream-count> |
 CHANNEL <SP> BUFFER_FILL <SP> <sampler-channel> |
 CHANNEL <SP> INFO <SP> <sampler-channel>

 <udp-port> ::= <number>

 <sampler-channel> ::= <number>

 <string> ::= <char> | <char> <string>

 <channels> ::= <number>

 <voice-count> ::= <number>

 <stream-count> ::= <number>

 <char> ::= <c> | "\" <x>

 <c> ::= any one of the 128 ASCII characters, but not any
 <special> or <SP>

 <special> ::= "<" | ">" | ";" | ":" | "&" | "{" | "}" | the
 control characters (ASCII codes 0 through 31
 inclusive and 127)

 <number> ::= <d> | <d> <number>

Schoenebeck Expires - June 2004 [Page 44]

LinuxSampler Control Protocol May 2004

 <d> ::= any one of the ten digits 0 through 9

 <x> ::= any one of the 128 ASCII characters (no exceptions)

 <SP> ::= the space character (ASCII code 32)

Security Considerations

As there is so far no method of authentication and authorisation
defined and so not required for a client applications to succeed to
connect, running LinuxSampler might be a security risk for the host
system the LinuxSampler instance is running on.

References

< Your references will be listed here. View "Page Layout" if they
are not currently visible. >

Acknowledgments

<Add any acknowledgements>

Author's Addresses

<Firstname> <Lastname>
<Affiliation>
<Address>
Phone: <optional>
Email: <Your email address>

Schoenebeck Expires - June 2004 [Page 45]

1 Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997

2 Crocker, D. and Overell, P.(Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997

3 Crocker, D. and Overell, P.(Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997

