
LinuxSampler Developer's
Internet Draft C. Schoenebeck
Document:
draft-linuxsampler-protocol-10.sxw

Interessengemeinschaft
Software Engineering

e. V.
Expires: August 2004 Sunday, June 20, 2004

LinuxSampler Control Protocol

Status of this Memo

This document specifies an application specific protocol for the
LinuxSampler core application and arbitrary third party software
that interacts with the LinuxSampler application, and requests
discussion and suggestions for improvements. Distribution of this
memo is unlimited.

Abstract

The LinuxSampler Control Protocol (LSCP) is an application-level
protocol primarily intended for local and remote controlling the
LinuxSampler main application, which is a sophisticated console
application essentially playing back audio samples and manipulating
the samples in real time to certain extent.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119 [1].

This protocol is always case-sensitive if not explicitly claimed the
opposite.

In examples, "C:" and "S:" indicate lines sent by the client (front-
end) and server (LinuxSampler) respectively. Lines in examples must
be interpreted as every line being CRLF terminated (carriage return
character followed by line feed character as defined in the ASCII
standard), thus the following example:

 C: “some line”
 “another line”

must actually be interpreted as client sending the following message:

 “some line<CR><LF>another line<CR><LF>”

Schoenebeck Expires - August 2004 [Page 1]

LinuxSampler Control Protocol June 2004

where <CR> symbolizes the carriage return character and <LF> the
line feed character as defined in the ASCII standard.

Due to technical reasons, messages can arbitrary be fragmented,
means the following example:

S: “abcd”

could also happen to be sent in three messages like in the following
sequence scenario:

– server sending message “a”
– followed by a delay (pause) with arbitrary duration
– followed by server sending messsage “bcd<CR>”
– again followed by a delay (pause) with arbitrary duration
– followed by server sending the message “<LF>”

where again <CR> and <LF> symbolize the carriage return and line
feed characters respectively.

Schoenebeck Expires - August 2004 [Page 2]

LinuxSampler Control Protocol June 2004

Table of Contents

1. Introduction...4
2. Focus of this protocol...4
3. Communication Overview...5
3.1 Request/response communication method...........................5
3.2 Subscribe/notify communication method...........................7
4. Description for control commands.................................9
4.1 Ignored lines and comments......................................9
4.2 Configuring audio drivers.......................................9
4.2.1 Getting all available audio output drivers...................10
4.2.2 Getting information about a specific audio output driver.....10
4.2.3 Getting information about specific audio output driver
parameter..11
4.2.4 Creating an audio output device..............................14
4.2.5 Destroying an audio output device............................15
4.2.6 Getting all created audio output device count................15
4.2.7 Getting all created audio output device list.................16
4.2.8 Getting current settings of an audio output device...........16
4.2.9 Changing settings of audio output devices....................17
4.2.10 Getting information about an audio channel..................18
4.2.11 Getting information about specific audio channel parameter..19
4.2.12 Changing settings of audio output channels..................21
4.3 Configuring MIDI input drivers.................................22
4.3.1 Getting all available MIDI input drivers.....................22
4.3.2 Getting information about a specific MIDI input driver.......23
4.3.3 Getting information about specific MIDI input driver parameter
...23
4.3.4 Creating a MIDI input device.................................26
4.3.5 Destroying a MIDI input device...............................26
4.3.6 Getting all created MIDI input device count..................27
4.3.7 Getting all created MIDI input device list...................27
4.3.8 Getting current settings of a MIDI input device..............28
4.3.9 Changing settings of audio output devices....................29
4.3.10 Getting information about a MIDI port.......................29
4.3.11 Getting information about specific MIDI port parameter......30
4.3.12 Changing settings of MIDI input ports.......................31
4.4 Configuring sampler channels...................................32
4.4.1 Loading an instrument..32
4.4.2 Loading a sampler engine.....................................33
4.4.3 Getting all created sampler channel count....................34
4.4.4 Getting all created sampler channel list.....................34
4.4.5 Adding a new sampler channel.................................35
4.4.6 Removing a sampler channel...................................35
4.4.7 Getting all available engines................................36
4.4.8 Getting information about an engine..........................36
4.4.9 Getting sampler channel information..........................37
4.4.10 Current number of active voices.............................39

Schoenebeck Expires - August 2004 [Page 3]

LinuxSampler Control Protocol June 2004

4.4.11 Current number of active disk streams.......................39
4.4.12 Current fill state of disk stream buffers...................39
4.4.13 Setting audio output device.................................40
4.4.14 Setting audio output channel................................41
4.4.15 Setting MIDI input device...................................41
4.4.16 Setting MIDI input port.....................................42
4.4.17 Setting MIDI input channel..................................42
4.4.18 Setting channel volume......................................43
4.4.19 Resetting a sampler channel.................................44
4.5 Controlling connection...44
4.5.1 Register front-end for receiving event messages..............44
4.5.2 Unregister front-end for not receiving UDP event messages
anymore..45
4.5.3 Enable or disable echo of commands...........................45
4.5.4 Close client connection......................................46
5. Command Syntax..46
6. Events..50
Security Considerations..53
Acknowledgments..53
Author's Addresses...53

1. Introduction

LinuxSampler is a so called software sampler application capable to
playback audio samples from a computer's Random Access Memory (RAM)
as well as directly streaming it from disk. LinuxSampler is designed
to be modular. It provides several so called “sampler engines” where
each engine is specialized for a certain purpose. LinuxSampler has
virtual channels which will be referred in this document as “sampler
channels”. The channels are in such way virtual as they can be
connected to an arbitrary MIDI input method and arbitrary MIDI
channel (e.g. sampler channel 17 could be connected to an Alsa
sequencer device 64:0 and listening to MIDI channel 1 there). Each
sampler engine will be assigned an own instance of one of the
available sampler engines (e.g. GigEngine, DLSEngine). The audio
output of each sampler channel can be routed to an arbitrary audio
output method (Alsa / Jack) and an arbitrary audio output channel
there.

2. Focus of this protocol

Main focus of this protocol is to provide a way to configure a
running LinuxSampler instance and to retrieve information about it.
The focus of this protocol is not to provide a way to control
synthesis parameters or even to trigger or release notes. Or in
other words; the focus are those functionalities which are not
covered by MIDI or which may at most be handled via MIDI System

Schoenebeck Expires - August 2004 [Page 4]

LinuxSampler Control Protocol June 2004

Exclusive Messages.

3. Communication Overview

There are two distinct methods of communication between a running
instance of LinuxSampler and one or more control applications, so
called “front-ends”: a simple request/response communication method
used by the clients to give commands to the server as well as to
inquire about server's status and a subscribe/notify communication
method used by the client to subscribe to and receive notifications
of certain events as they happen on the server. The latter needs
more effort to be implemented in the front-end application. The two
communication methods will be described next.

3.1 Request/response communication method

This simple communication method is based on TCP. The front-end
application establishes a TCP connection to the LinuxSampler
instance on a certain host system. Then the front-end application
will send certain ASCII based commands as defined in this document
(every command line must be CRLF terminated – see “Conventions used
in this document” at the beginning of this document) and the
LinuxSampler application will response after a certain process time
with an appropriate ASCII based answer, also as defined in this
document. So this TCP communication is simply based on query and
answer paradigm. That way LinuxSampler is only able to answer on
queries from front-ends, but not able to automatically send messages
to the client if it's not asked to. The fronted should not reconnect
to LinuxSampler for every single command, instead it should keep the
connection established and simply resend message(s) for subsequent
commands. To keep information in the front-end up-to-date the front-
end has to periodically send new requests to get the current
information from the LinuxSampler instance. This is often referred
to as “polling”. While polling is simple to implement and may be OK
to use in some cases, there may be disadvantages to polling such as
network traffic overhead and information being out of date.
It is possible for a client or several clients to open more than one
connection to the server at the same time. It is also possible to
send more than one request to the server at the same time but if
those requests are sent over the same connection server MUST execute
them sequentially. Upon executing a request server will produce a
result set and send it to the client. Each and every request made by
the client MUST result in a result set being sent back to the client.
No other data other than a result set may be sent by a server to a
client. No result set may be sent to a client without the client
sending request to the server first. On any particular connection,
result sets MUST be sent in their entirety without being interrupted

Schoenebeck Expires - August 2004 [Page 5]

LinuxSampler Control Protocol June 2004

by other result sets. If several requests got queued up at the
server they MUST be processed in the order they were received and
result sets MUST be sent back in the same order.

1) Request format

Requests include tokens defined in this document as well as certain
other elements that include names of drivers and engines and their
parameters supported by the server and learned by the client at
runtime as well as parameter values that could be of different types
including strings, integer and float values, etc.
All string values MUST be wrapped in single quotes.
All tokens MUST be uppercase.
All driver, engine and parameter names MUST NOT be completely
uppercase to avoid collision with tokens, but may include some
uppercase characters as long as this will not create a collision
with a token. Good rule of thumb is to either not use uppercase
characters at all or use a few uppercase characters, for example
good parameter/engine/driver names include: card, GigEngine, Alsa,
etc. Hardcoded parameter names that MUST be implemented and that are
not channel/engine/driver specific MAY have all uppercase names as
long as those name do not overlap with any tokens.
All requests MUST start with a token and MUST end with <CRLF>.

2) Result format

Result set could be one of the following types:
1)Normal
2)Warning
3)Error

Warning and Error result sets MUST be single line and have the
following format:

 “WRN:<warning-code>:<warning-message>”
 “ERR:<error-code>:<error-message>”

Where <warning-code> and <error-code> are numeric unique identifiers
of the warning or error and <warning-message> and <error-message> are
human readable descriptions of the warning or error respectively.

Normal result sets could be:
1)Empty
2)Single line
3)Multi-line

Empty result set is issued when the server only needed to
acknowledge the fact that the request was received and it was

Schoenebeck Expires - August 2004 [Page 6]

LinuxSampler Control Protocol June 2004

processed successfully and no additional information is available.
This result set has the following format:

 “OK”

Single line result sets are command specific. One example of a
single line result set is an empty line.
Multi-line result sets are command specific and may include one or
more lines of information. They MUST always end with the following
line:
 “.”

In addition to above mentioned formats, warnings and empty result
sets MAY be indexed. In this case, they have the following formats
respectively:

 “WRN[<index>]:<warning-code>:<warning-message>”
 “OK[<index>]”

where <index> is command specific and is used to indicate channel
number that the result set was related to or other integer value.

Each line of the result set MUST end with <CRLF>.

3.2 Subscribe/notify communication method

This more sophisticated communication method is actually only an
extension of the simple request/response communication method. The
front-end still uses a TCP connection and sends the same commands on
the TCP connection. Two extra commands are SUBSCRIBE and UNSUBSCRIBE
commands that allow a client to tell the server that it is
interested in receiving notifications about certain events as they
happen on the server. The SUBSCRIBE command has the following syntax:

 SUBSCRIBE <event-id>

where <event-id> will be replaced by the respective event that
client wants to subscribe to.
 Upon receiving such request, server SHOULD respond with OK and
start sending EVENT notifications when a given even has occurred to
the front-end when an event has occurred. It MAY be possible certain
events may be sent before OK response during real time nature of
their generation.
 Event messages have the following format:

 NOTIFY:<event-id>:<custom-event-data>

where <event-id> uniquely identifies the event that has occurred and

Schoenebeck Expires - August 2004 [Page 7]

LinuxSampler Control Protocol June 2004

<custom-event-data> is event specific.

Several rules must be followed by the server when generating events:
1)Events MUST NOT be sent to any client who has not issued an
appropriate SUBSCRIBE command.

2)Events MUST only be sent using the same connection that was used
to subscribe to them.

3)When response is being sent to the client, event MUST be inserted
in the stream before or after the response, but NOT in the middle.
Same is true about the response. It should never be inserted in the
middle of the event message as well as any other response.

If the client is not interested in a particular event anymore it MAY
issue UNSUBSCRIBE command using the following syntax:

 UNSUBSCRIBE <event-id>

where <event-id> will be replace by the respective event that client
is no longer interested in receiving. For a list of supported events
see chapter 6.

Example: the fill states of disk stream buffers have changed on
sampler channel 4 and the LinuxSampler instance will react by
sending the following message to all clients who subscribed to this
event:

 NOTIFY:CHANNEL_BUFFER_FILL:4 [35]62%,[33]80%,[37]98%

Which means there are currently three active streams on sampler
channel 4, where the stream with ID “35” is filled by 62%, stream
with ID 33 is filled by 80% and stream with ID 37 is filled by 98%.

Clients may choose to open more than one connection to the server
and use some connections to receive notifications while using other
connections to issue commands to the back-end. This is entirely
legal and up to the implementation. This does not change the
protocol in any way and no special restrictions exist on the server
to allow or disallow this or to track what connections belong to
what front-ends. Server will listen on a single port, accept
multiple connections and support protocol described in this
specification in it's entirety on this single port on each
connection that it accepted.

Due to the fact that TCP is used for this communication, dead peers
will be detected automatically by the OS TCP stack. While it may
take a while to detect dead peers if no traffic is being sent from
server to client (TCP keep-alive timer is set to 2 hours on many
OSes) it will not be an issue here as when notifications are sent by
the server, dead client will be detected quickly.

Schoenebeck Expires - August 2004 [Page 8]

LinuxSampler Control Protocol June 2004

When connection is closed for any reason server MUST forget all
subscriptions that were made on this connection. If client
reconnects it MUST resubscribe to all events that it wants to
receive.

4. Description for control commands

This chapter will describe the available control commands that can
be sent on the TCP connection in detail. Some certain commands (e.g.
“GET CHANNEL INFO” or “GET ENGINE INFO”) lead to multiple-line
responses. In this case LinuxSampler signals the end of the response
by a “.” (single dot) line.

4.1 Ignored lines and comments

White lines, that is lines which only contain space and tabulator
characters, and lines that start with a “#” character are ignored,
thus it's possible for example to group commands and to place
comments in a LSCP script file.

4.2 Configuring audio drivers

Instances of drivers in LinuxSampler are called devices. You can
use multiple audio devices simultaneously, e.g. to output the sound
of one sampler channel using the Alsa audio output driver, and on
another sampler channel you might want to use the Jack audio output
driver. For particular audio output systems it's also possible to
create several devices of the same audio output driver, e.g. two
separate Alsa audio output devices for using two different sound
cards at the same time. This chapter describes all commands to
configure LinuxSampler's audio output devices and their parameters.

Instead of defining commands and parameters for each driver
individually, all possible parameters, their meanings and possible
values have to be obtained at runtime. This makes the protocol a
bit abstract, but has the advantage, that front-ends can be written
independently of what drivers are currently implemented and what
parameters these drivers are actually offering. This means front-
ends can even handle drivers which are implemented somewhere in
future without modifying the front-end at all.

Note: examples in this chapter showing particular parameters of
drivers are not meant as specification of the drivers' parameters.
Driver implementations in LinuxSampler might have complete
different parameter names and meanings than shown in these examples

Schoenebeck Expires - August 2004 [Page 9]

LinuxSampler Control Protocol June 2004

or might change in future, so these examples are only meant for
showing how to retrieve what parameters drivers are offering, how
to retrieve their possible values, etc.

4.2.1 Getting all available audio output drivers

Use the following command to list all audio output drivers
currently available for the LinuxSampler instance:

 GET AVAILABLE_AUDIO_OUTPUT_DRIVERS

 Possible Answers:

 LinuxSampler will answer by sending comma separated character
 strings, each symbolizing an audio output driver.

 Example:

 C: “GET AVAILABLE_AUDIO_OUTPUT_DRIVERS”
 S: “Alsa,Jack”

4.2.2 Getting information about a specific audio output driver

Use the following command to get detailed information about a
specific audio output driver:

 GET AUDIO_OUTPUT_DRIVER INFO <audio-output-driver>

Where <audio-output-driver> is the name of the audio output driver,
returned by the “GET AVAILABLE_AUDIO_OUTPUT_DRIVERS” command.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following information categories are defined:

 DESCRIPTION –
 character string describing the audio output driver

 VERSION -
 character string reflecting the driver's version

 PARAMETERS –
 comma separated list of all parameters available for

Schoenebeck Expires - August 2004 [Page 10]

LinuxSampler Control Protocol June 2004

 the given audio output driver, at least parameters
 'channels', 'samplerate' and 'active' are offered by
 all audio output drivers

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET AUDIO_OUTPUT_DRIVER INFO Alsa”
 S: “DESCRIPTION: Advanced Linux Sound Architecture”
 “VERSION: 1.0”
 “PARAMETERS:driver,channels,samplerate,active,fragments,
 fragmentsize,card”
 “.”

4.2.3 Getting information about specific audio output driver parameter

Use the following command to get detailed information about a
specific audio output driver parameter:

 GET AUDIO_OUTPUT_DRIVER_PARAMETER INFO <audio> <prm> [<deplist>]

Where <audio> is the name of the audio output driver as returned by
the “GET AVAILABLE_AUDIO_OUTPUT_DRIVERS” command, <prm> a specific
parameter name for which information should be obtained (as
returned by the “GET AUDIO_OUTPUT_DRIVER INFO” command) and
<deplist> is an optional list of parameters on which the sought
parameter <prm> depends on, <deplist> is a list of key-value pairs
in form of “key1=val1 key2=val2 ...”, where character string values
are encapsulated into apostrophes ('). Arguments given with
<deplist> which are not dependency parameters of <prm> will be
ignored, means the front-end application can simply put all
parameters into <deplist> with the values already selected by the
user.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. There are
 information which is always returned, independently of the
 given driver parameter and there are optional information
 which is only shown dependently to given driver parameter. At
 the moment the following information categories are defined:

 TYPE –
 either “BOOL” for boolean value(s) or “INT” for integer

Schoenebeck Expires - August 2004 [Page 11]

LinuxSampler Control Protocol June 2004

 value(s) or “FLOAT” for dotted number(s) or “STRING” for
 character string(s)
 (always returned, no matter which driver parameter)

 DESCRIPTION –
 arbitrary text describing the purpose of the parameter
 (always returned, no matter which driver parameter)

 MANDATORY -
 either true or false, defines if this parameter must be
 given when the device is to be created with the
 'CREATE AUDIO_OUTPUT_DEVICE' command
 (always returned, no matter which driver parameter)

 FIX -
 either true or false, if false then this parameter can
 be changed at any time, once the device is created by
 the 'CREATE AUDIO_OUTPUT_DEVICE' command
 (always returned, no matter which driver parameter)

 MULTIPLICITY -
 either true or false, defines if this parameter allows
 only one value or a list of values, where true means
 multiple values and false only a single value allowed
 (always returned, no matter which driver parameter)

 DEPENDS -
 comma separated list of paramters this parameter depends
 on, means the values for fields 'DEFAULT', 'RANGE_MIN',
 'RANGE_MAX' and 'POSSIBILITIES' might depend on these
 listed parameters, for example assuming that an audio
 driver (like the Alsa driver) offers parameters 'card'
 and 'samplerate' then parameter 'samplerate' would
 depend on 'card' because the possible values for
 'samplerate' depends on the sound card which can be
 chosen by the 'card' parameter
 (optionally returned, dependent to driver parameter)

 DEFAULT –
 reflects the default value for this parameter which is
 used when the device is created and not explicitly
 given with the 'CREATE AUDIO_OUTPUT_DEVICE' command,
 in case of MULTIPLCITY=true, this is a comma separated
 list, that's why character strings are encapsulated into
 apostrophes (')
 (optionally returned, dependent to driver parameter)

 RANGE_MIN –
 defines lower limit of the allowed value range for this

Schoenebeck Expires - August 2004 [Page 12]

LinuxSampler Control Protocol June 2004

 parameter, can be an integer value as well as a dotted
 number, this parameter is often used in conjunction
 with RANGE_MAX, but may also appear without
 (optionally returned, dependent to driver parameter)

 RANGE_MAX –
 defines upper limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number, this parameter is often used in conjunction with
 RANGE_MIN, but may also appear without
 (optionally returned, dependent to driver parameter)

 POSSIBILITES –
 comma separated list of possible values for this
 parameter, character strings are encapsulated into
 apostrophes
 (optionally returned, dependent to driver parameter)

 The mentioned fields above don't have to be in particular order.

 Examples:

 C: “GET AUDIO_OUTPUT_DRIVER_PARAMETER INFO Alsa card”
 S: “DESCRIPTION: sound card to be used”
 “TYPE: STRING”
 “MANDATORY: false”
 “FIX: true”
 “MULTIPLICITY: false”
 “DEFAULT: '0,0'”
 “POSSIBILITES: '0,0','1,0','2,0'”
 “.”

 C: “GET AUDIO_OUTPUT_DRIVER_PARAMETER INFO Alsa samplerate”
 S: “DESCRIPTION: output sample rate in Hz”
 “TYPE: INT”
 “MANDATORY: false”
 “FIX: false”
 “MULTIPLICITY: false”
 “DEPENDS: card”
 “DEFAULT: 44100”
 “.”

 C: “GET AUDIO_OUTPUT_DRIVER_PARAMETER INFO Alsa samplerate
 card='0,0'”
 S: “DESCRIPTION: output sample rate in Hz”
 “TYPE: INT”
 “MANDATORY: false”
 “FIX: false”
 “MULTIPLICITY: false”

Schoenebeck Expires - August 2004 [Page 13]

LinuxSampler Control Protocol June 2004

 “DEPENDS: card”
 “DEFAULT: 44100”
 “RANGE_MIN: 22050”
 “RANGE_MAX: 96000”
 “.”

4.2.4 Creating an audio output device

Use the following command to create a new audio output device for
the desired audio output system:

 CREATE AUDIO_OUTPUT_DEVICE <audio-output-driver> [<param-list>]

 Where <audio-output-driver> should be replaced by the desired audio
 output system and <param-list> by an optional list of driver
 specific parameters in form of “key1=val1 key2=val2 ...”, where
 character string values should be encapsulated into apostrophes (').
 Note that there might be drivers which require parameter(s) to be
 given with this command. Use the previously described commands in
 this chapter to get this information.

 Possible Answers:

 “OK[<device-id>]” -
 in case the device was successfully created, where
 <device-id> is the numerical ID of the new device

 “WRN[<device-id>]:<warning-code>:<warning-message>” -
 in case the device was created successfully, where
 <device-id> is the numerical ID of the new device, but there
 are noteworthy issue(s) related (e.g. sound card doesn't
 support given hardware parameters and the driver is using
 fall-back values), providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

 Examples:

 C: “CREATE AUDIO_OUTPUT_DEVICE Alsa”
 S: “OK[0]”

 C: “CREATE AUDIO_OUTPUT_DEVICE Alsa card='2,0' samplerate=96000”
 S: “OK[1]”

Schoenebeck Expires - August 2004 [Page 14]

LinuxSampler Control Protocol June 2004

4.2.5 Destroying an audio output device

Use the following command to destroy a created output device:

 DESTROY AUDIO_OUTPUT_DEVICE <device-id>

 Where <device-id> should be replaced by the numerical ID of the
 audio output device as given by the “CREATE AUDIO_OUTPUT_DEVICE” or
 “GET AUDIO_OUTPUT_DEVICES” command.

 Possible Answers:

 “OK” -
 in case the device was successfully destroyed

 “WRN:<warning-code>:<warning-message>” -
 in case the device was destroyed successfully, but there are
 noteworthy issue(s) related (e.g. an audio over ethernet
 driver was unloaded but the other host might not be
 informed about this situation), providing an appropriate
 warning code and warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “DESTROY AUDIO_OUTPUT_DEVICE 0”
 S: “OK”

4.2.6 Getting all created audio output device count

Use the following command to count all created audio output devices:

 GET AUDIO_OUTPUT_DEVICES

 Possible Answers:

 LinuxSampler will answer by sending the current number of all
 audio output devices.

 Examples:

 C: “GET AUDIO_OUTPUT_DEVICES”
 S: “4”

Schoenebeck Expires - August 2004 [Page 15]

LinuxSampler Control Protocol June 2004

4.2.7 Getting all created audio output device list

Use the following command to list all created audio output devices:

 LIST AUDIO_OUTPUT_DEVICES

 Possible Answers:

 LinuxSampler will answer by sending a comma separated list with
 the numerical IDs of all audio output devices.

 Examples:

 C: “LIST AUDIO_OUTPUT_DEVICES”
 S: “0,1,4,5”

4.2.8 Getting current settings of an audio output device

Use the following command to get current settings of a specific,
created audio output device:

 GET AUDIO_OUTPUT_DEVICE INFO <device-id>

Where <device-id> should be replaced by be numerical ID of the
audio output device as e.g. returned by the “GET
AUDIO_OUTPUT_DEVICES” command.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. As some
 parameters might allow multiple values, character strings are
 encapsulated into apostrophes ('). At the moment the following
 information categories are defined (independently of device):

 driver –
 identifier of the used audio output driver, as also
 returned by the “GET AVAILABLE_AUDIO_OUTPUT_DRIVERS”
 command

 channels –
 amount of audio output channels this device currently
 offers

Schoenebeck Expires - August 2004 [Page 16]

LinuxSampler Control Protocol June 2004

 samplerate –
 playback sample rate the device uses

 active -
 either true or false, if false then the audio device is
 inactive and doesn't output any sound, nor do the
 sampler channels connected to this audio device render
 any audio

 The mentioned fields above don't have to be in particular
 order. The fields above are only those fields which are
 returned by all audio output devices. Every audio output driver
 might have its own, additional driver specific parameters (see
 “GET AUDIO_OUTPUT_DRIVER INFO” command) which are also returned
 by this command.

 Example:

 C: “GET AUDIO_OUTPUT_DEVICE INFO 0”
 S: “driver: Alsa”
 “channels: 2”
 “samplerate: 44100”
 “active: true”
 “fragments: 2”
 “fragmentsize: 128”
 “card: '0,0'”
 “.”

4.2.9 Changing settings of audio output devices

Use the following command to alter a specific setting of a created
audio output device:

 SET AUDIO_OUTPUT_DEVICE_PARAMETER <device-id> <key>=<value>

 Where <device-id> should be replaced by the numerical ID of the
 audio output device, <key> by the name of the parameter to change
 and <value> by the new value for this parameter.

 Possible Answers:

 “OK” -
 in case setting was successfully changed

 “WRN:<warning-code>:<warning-message>” -
 in case setting was changed successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

Schoenebeck Expires - August 2004 [Page 17]

LinuxSampler Control Protocol June 2004

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “SET AUDIO_OUTPUT_DEVICE_PARAMETER 0 fragmentsize=128”
 S: “OK”

4.2.10 Getting information about an audio channel

Use the following command to get information about an audio channel:

 GET AUDIO_OUTPUT_CHANNEL INFO <device-id> <audio-chan>

Where <device-id> is the numerical ID of the audio output device
and <audio-chan> the audio channel number.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following information categories are defined:

 NAME –
 arbitrary character string naming the channel, which
 doesn't have to be unique
 (always returned by all audio channels)

 IS_MIX_CHANNEL –
 either true or false, a mix-channel is not a real,
 independent audio channel, but a virtual channel which
 is mixed to another real channel, this mechanism is
 needed for sampler engines which need more audio
 channels than the used audio system might be able to
 offer
 (always returned by all audio channels)

 MIX_CHANNEL_DESTINATION -
 reflects the real audio channel (of the same audio
 output device) this mix channel refers to, means where
 the audio signal actually will be routed / added to
 (only returned in case the audio channel is mix channel)

 The mentioned fields above don't have to be in particular

Schoenebeck Expires - August 2004 [Page 18]

LinuxSampler Control Protocol June 2004

 order. The fields above are only those fields which are
 generally returned for the described cases by all audio
 channels regardless of the audio driver. Every audio channel
 might have its own, additional driver & channel specific
 parameters.

 Examples:

 C: “GET AUDIO_OUTPUT_CHANNEL INFO 0 0”
 S: “NAME: studio monitor left”
 “IS_MIX_CHANNEL: false”
 “.”

 C: “GET AUDIO_OUTPUT_CHANNEL INFO 0 1”
 S: “NAME: studio monitor right”
 “IS_MIX_CHANNEL: false”
 “.”

 C: “GET AUDIO_OUTPUT_CHANNEL INFO 0 2”
 S: “NAME: studio monitor left”
 “IS_MIX_CHANNEL: true”
 “MIX_CHANNEL_DESTINATION: 1”
 “.”

 C: “GET AUDIO_OUTPUT_CHANNEL INFO 1 0”
 S: “NAME: 'ardour (left)'”
 “IS_MIX_CHANNEL: false”
 “jack_bindings: 'ardour:0'”
 “.”

4.2.11 Getting information about specific audio channel parameter

Use the following command to get detailed information about
specific audio channel parameter:

 GET AUDIO_OUTPUT_CHANNEL_PARAMETER INFO <dev-id> <chan> <param>

Where <dev-id> is the numerical ID of the audio output device as
returned by the “GET AUDIO_OUTPUT_DEVICES” command, <chan> the
audio channel number and <param> a specific channel parameter name
for which information should be obtained (as returned by the “GET
AUDIO_OUTPUT_CHANNEL INFO” command).

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally

Schoenebeck Expires - August 2004 [Page 19]

LinuxSampler Control Protocol June 2004

 the info character string to that info category. There are
 information which is always returned, independently of the
 given channel parameter and there is optional information
 which is only shown dependently to the given audio channel. At
 the moment the following information categories are defined:

 TYPE –
 either “BOOL” for boolean value(s) or “INT” for integer
 value(s) or “FLOAT” for dotted number(s) or “STRING” for
 character string(s)
 (always returned)

 DESCRIPTION –
 arbitrary text describing the purpose of the parameter
 (always returned)

 FIX -
 either true or false, if true then this parameter is
 read only, thus cannot be altered
 (always returned)

 MULTIPLICITY -
 either true or false, defines if this parameter allows
 only one value or a list of values, where true means
 multiple values and false only a single value allowed
 (always returned)

 RANGE_MIN –
 defines lower limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number, usually used in conjunction with 'RANGE_MAX',
 but may also appear without
 (optionally returned, dependent to driver & channel
 parameter)

 RANGE_MAX –
 defines upper limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number, usually used in conjunction with 'RANGE_MIN',
 but may also appear without
 (optionally returned, dependent to driver & channel
 parameter)

 POSSIBILITES –
 comma separated list of possible values for this
 parameter, character strings are encapsulated into
 apostrophes
 (optionally returned, dependent to driver & channel
 parameter)

Schoenebeck Expires - August 2004 [Page 20]

LinuxSampler Control Protocol June 2004

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET AUDIO_OUTPUT_CHANNEL_PARAMETER INFO 1 0 jack_bindings”
 S: “DESCRIPTION: bindings to other Jack clients”
 “TYPE: STRING”
 “FIX: false”
 “MULTIPLICITY: true”
 “POSSIBILITES: 'PCM:0','PCM:1','ardour:0','ardour:1'”
 “.”

4.2.12 Changing settings of audio output channels

Use the following command to alter a specific setting of an audio
output channel:

 SET AUDIO_OUTPUT_CHANNEL_PARAMETER <dev-id> <chn> <key>=<value>

 Where <dev-id> should be replaced by the numerical ID of the audio
 device, <chn> by the audio channel number, <key> by the name of the
 parameter to change and <value> by the new value for this parameter.

 Possible Answers:

 “OK” -
 in case setting was successfully changed

 “WRN:<warning-code>:<warning-message>” -
 in case setting was cahnged successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “SET AUDIO_OUTPUT_CHANNEL PARAMETER 0 0 jack_bindings='PCM:0'”
 S: “OK”

 C: “SET AUDIO_OUTPUT_CHANNEL PARAMETER 0 0 NAME='monitor left'”
 S: “OK”

Schoenebeck Expires - August 2004 [Page 21]

LinuxSampler Control Protocol June 2004

4.3 Configuring MIDI input drivers

Instances of drivers in LinuxSampler are called devices. You can
use multiple MIDI devices simultaneously, e.g. to use MIDI over
ethernet as MIDI input on one sampler channel and Alsa as MIDI
input on another sampler channel. For particular MIDI input systems
it's also possible to create several devices of the same MIDI input
type. This chapter describes all commands to configure
LinuxSampler's MIDI input devices and their parameters.

Instead of defining commands and parameters for each driver
individually, all possible parameters, their meanings and possible
values have to be obtained at runtime. This makes the protocol a
bit abstract, but has the advantage, that front-ends can be written
independently of what drivers are currently implemented and what
parameters these drivers are actually offering. This means front-
ends can even handle drivers which are implemented somewhere in
future without modifying the front-end at all.

Commands for configuring MIDI input devices are pretty much the
same as the commands for configuring audio output drivers, already
described in the last chapter.

Note: examples in this chapter showing particular parameters of
drivers are not meant as specification of the drivers' parameters.
Driver implementations in LinuxSampler might have complete
different parameter names and meanings than shown in these examples
or might change in future, so these examples are only meant for
showing how to retrieve what parameters drivers are offering, how
to retrieve their possible values, etc.

4.3.1 Getting all available MIDI input drivers

Use the following command to list all MIDI input drivers currently
available for the LinuxSampler instance:

 GET AVAILABLE_MIDI_INPUT_DRIVERS

 Possible Answers:

 LinuxSampler will answer by sending comma separated character
 strings, each symbolizing a MIDI input driver.

 Example:

 C: “GET AVAILABLE_MIDI_INPUT_DRIVERS”
 S: “Alsa,Jack”

Schoenebeck Expires - August 2004 [Page 22]

LinuxSampler Control Protocol June 2004

4.3.2 Getting information about a specific MIDI input driver

Use the following command to get detailed information about a
specific MIDI input driver:

 GET MIDI_INPUT_DRIVER INFO <midi-input-driver>

Where <midi-input-driver> is the name of the MIDI input driver.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following information categories are defined:

 DESCRIPTION –
 arbitrary description text about the MIDI input driver

 VERSION -
 arbitrary character string regarding the driver's
 version

 PARAMETERS –
 comma separated list of all parameters available for
 the given MIDI input driver

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET MIDI_INPUT_DRIVER INFO Alsa”
 S: “DESCRIPTION: Advanced Linux Sound Architecture”
 “VERSION: 1.0”
 “PARAMETERS: driver,active”
 “.”

4.3.3 Getting information about specific MIDI input driver parameter

Use the following command to get detailed information about a
specific parameter of a specific MIDI input driver:

 GET MIDI_INPUT_DRIVER_PARAMETER INFO <midit> <param> [<deplist>]

Where <midi-t> is the name of the MIDI input driver as returned by
the “GET AVAILABLE_MIDI_INPUT_DRIVERS” command, <param> a specific

Schoenebeck Expires - August 2004 [Page 23]

LinuxSampler Control Protocol June 2004

parameter name for which information should be obtained (as
returned by the “GET MIDI_INPUT_DRIVER INFO” command) and
<deplist> is an optional list of parameters on which the sought
parameter <param> depends on, <deplist> is a key-value pair list in
form of “key1=val1 key2=val2 ...”, where character string values
are encapsulated into apostrophes ('). Arguments given with
<deplist> which are not dependency parameters of <param> will be
ignored, means the front-end application can simply put all
parameters in <deplist> with the values selected by the user.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. There is
 information which is always returned, independent of the
 given driver parameter and there is optional information
 which is only shown dependent to given driver parameter. At
 the moment the following information categories are defined:

 TYPE –
 either “BOOL” for boolean value(s) or “INT” for integer
 value(s) or “FLOAT” for dotted number(s) or “STRING” for
 character string(s)
 (always returned, no matter which driver parameter)

 DESCRIPTION –
 arbitrary text to describe the purpose of the parameter
 (always returned, no matter which driver parameter)

 MANDATORY -
 either true or false, defines if this parameter must be
 given when the device is to be created by the
 'CREATE MIDI_INPUT_DEVICE' command
 (always returned, no matter which driver parameter)

 FIX -
 either true or false, defines if this parameter can be
 changed at any time, once the device is created by the
 'CREATE MIDI_INPUT_DEVICE' command
 (always returned, no matter which driver parameter)

 MULTIPLICITY -
 either true or false, defines if this parameter allows
 only one value or a list of values, where true means
 multiple values and false only a one value allowed
 (always returned, no matter which driver parameter)

Schoenebeck Expires - August 2004 [Page 24]

LinuxSampler Control Protocol June 2004

 DEPENDS -
 comma separated list of parameters this parameter
 depends on, means the values for fields 'DEFAULT',
 'RANGE_MIN', 'RANGE_MAX' and 'POSSIBILITIES' might
 depend on these listed parameters
 (optionally returned, dependent to driver parameter)

 DEFAULT –
 reflects the default value for this parameter which is
 used when the device is created and not explicitly
 defined with the 'CREATE MIDI_INPUT_DEVICE' command,
 in case of MULTIPLICITY=true, this is a comma separated
 list, that's why character strings are encapsulated into
 apostrophes (')
 (optional returned, dependent to driver parameter)

 RANGE_MIN –
 defines lower limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number, this parameter is usually used in conjuncion
 with 'RANGE_MAX' but may also appear without
 (optional returned, dependent to driver parameter)

 RANGE_MAX –
 defines upper limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number, this parameter is usually used in conjunction
 with 'RANGE_MIN' but may also appear without
 (optional returned, dependent to driver parameter)

 POSSIBILITES –
 comma separated list of possible values for this
 parameter, character strings are encapsulated into
 (optional returned, dependent to driver parameter)

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET MIDI_INPUT_DRIVER_PARAMETER INFO Alsa active”
 S: “DESCRIPTION: Whether device is enabled”
 “TYPE: BOOL”
 “MANDATORY: false”
 “FIX: false”
 “MULTIPLICITY: false”
 “DEFAULT: true”
 “.”

Schoenebeck Expires - August 2004 [Page 25]

LinuxSampler Control Protocol June 2004

4.3.4 Creating a MIDI input device

Use the following command to create a new MIDI input device for
the desired MIDI input system:

 CREATE MIDI_INPUT_DEVICE <midi-input-driver> [<param-list>]

Where <midi-input-driver> should be replaced by the desired MIDI
input system and <param-list> by an optional list of driver
specific parameters in form of “key1=val1 key2=val2 ...”, where

 character string values should be encapsulated into apostrophes (').
 Note that there might be drivers which require parameter(s) to be
 given with this command. Use the previously described commands in
 this chapter to get that information.

 Possible Answers:

 “OK[<device-id>]” -
 in case the device was successfully created, where
 <device-id> is the numerical ID of the new device

 “WRN[<device-id>]:<warning-code>:<warning-message>” -
 in case the driver was loaded successfully, where
 <device-id> is the numerical ID of the new device, but
 there are noteworthy issue(s) related, providing an
 appropriate warning code and warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “CREATE MIDI_INPUT_DEVICE Alsa”
 S: “OK[0]”

4.3.5 Destroying a MIDI input device

Use the following command to destroy a created MIDI input device:

 DESTROY MIDI_INPUT_DEVICE <device-id>

 Where <device-id> should be replaced by the device's numerical ID.

 Possible Answers:

 “OK” -
 in case the device was successfully destroyed

Schoenebeck Expires - August 2004 [Page 26]

LinuxSampler Control Protocol June 2004

 “WRN:<warning-code>:<warning-message>” -
 in case the device was destroyed, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “DESTROY MIDI_INPUT_DEVICE 0”
 S: “OK”

4.3.6 Getting all created MIDI input device count

Use the following command to count all created MIDI input devices:

 GET MIDI_INPUT_DEVICES

 Possible Answers:

 LinuxSampler will answer by sending the current number of all
 MIDI input devices.

 Examples:

 C: “GET MIDI_INPUT_DEVICES”
 S: “3”

4.3.7 Getting all created MIDI input device list

Use the following command to list all created MIDI input devices:

 LIST MIDI_INPUT_DEVICES

 Possible Answers:

 LinuxSampler will answer by sending a comma separated list
 with the numerical Ids of all created MIDI input devices.

 Examples:

 C: “LIST MIDI_INPUT_DEVICES”
 S: “0,1,2”

Schoenebeck Expires - August 2004 [Page 27]

LinuxSampler Control Protocol June 2004

 C: “LIST MIDI_INPUT_DEVICES”
 S: “1,3”

4.3.8 Getting current settings of a MIDI input device

Use the following command to get current settings of a specific,
created MIDI input device:

 GET MIDI_INPUT_DEVICE INFO <device-id>

Where <device-id> is the numerical ID of the MIDI input device.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. As some
 parameters might allow multiple values, character strings are
 encapsulated into apostrophes ('). At the moment the following
 information categories are defined (independent of driver):

 DRIVER –
 identifier of the used MIDI input driver, as e.g.
 returned by the “GET AVAILABLE_MIDI_INPUT_DRIVERS”
 command

 ACTIVE -
 either true or false, if false then the MIDI device is
 inactive and doesn't listen to any incoming MIDI events
 and thus doesn't forward them to connected sampler
 channels

 The mentioned fields above don't have to be in particular
 order. The fields above are only those fields which are
 returned by all MIDI input devices. Every MIDI input driver
 might have its own, additional driver specific parameters (see
 “GET MIDI_INPUT_DRIVER INFO” command) which are also returned
 by this command.

 Example:

 C: “GET MIDI_INPUT_DEVICE INFO 0”
 S: “driver: Alsa”
 “active: true”
 “.”

Schoenebeck Expires - August 2004 [Page 28]

LinuxSampler Control Protocol June 2004

4.3.9 Changing settings of audio output devices

Use the following command to alter a specific setting of a created
MIDI input device:

 SET MIDI_INPUT_DEVICE_PARAMETER <device-id> <key>=<value>

 Where <device-id> should be replaced by the numerical ID of the
 MIDI input device, <key> by the name of the parameter to change and
 <value> by the new value for this parameter.

 Possible Answers:

 “OK” -
 in case setting was successfully changed

 “WRN:<warning-code>:<warning-message>” -
 in case setting was cahnged successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

 Example:

 C: “SET MIDI_INPUT_DEVICE PARAMETER 0 ACTIVE=false”
 S: “OK”

4.3.10 Getting information about a MIDI port

Use the following command to get information about a MIDI port:

 GET MIDI_INPUT_PORT INFO <device-id> <midi-port>

Where <device-id> is the numerical ID of the MIDI input device and
<midi-port> the MIDI input port number.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following information categories are defined:

 NAME –

Schoenebeck Expires - August 2004 [Page 29]

LinuxSampler Control Protocol June 2004

 arbitrary character string naming the port

 The field above is only the one which is returned by all MIDI
 ports regardless of the MIDI driver & port. Every MIDI port
 might have its own, additional driver & port specific
 parameters.

 Example:

 C: “GET MIDI_INPUT_PORT INFO 0 0”
 S: “name: 'Masterkeyboard'”
 “alsa_seq_bindings: '64:0'”
 “.”

4.3.11 Getting information about specific MIDI port parameter

Use the following command to get detailed information about
specific MIDI port parameter:

 GET MIDI_INPUT_PORT_PARAMETER INFO <dev-id> <port> <param>

Where <dev-id> is the numerical ID of the MIDI input device as
returned by the “GET MIDI_INPUT_DEVICES” command, <port> the MIDI
port number and <param> a specific port parameter name for which
information should be obtained (as returned by the “GET
MIDI_INPUT_PORT INFO” command).

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. There is
 information which is always returned, independently of the
 given channel parameter and there is optional information
 which are only shown dependently to the given MIDI port. At the
 moment the following information categories are defined:

 TYPE –
 either “BOOL” for boolean value(s) or “INT” for integer
 value(s) or “FLOAT” for dotted number(s) or “STRING” for
 character string(s)
 (always returned)

 DESCRIPTION –
 arbitrary text describing the purpose of the parameter
 (always returned)

Schoenebeck Expires - August 2004 [Page 30]

LinuxSampler Control Protocol June 2004

 FIX -
 either true or false, if true then this parameter is
 read only, thus cannot be altered
 (always returned)

 MULTIPLICITY -
 either true or false, defines if this parameter allows
 only one value or a list of values, where true means
 multiple values and false only a single value allowed
 (always returned)

 RANGE_MIN –
 defines lower limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number, this parameter is usually used in conjunction
 with 'RANGE_MAX' but may also appear without
 (optionally returned, dependent to driver & port
 parameter)

 RANGE_MAX –
 defines upper limit of the allowed value range for this
 parameter, can be an integer value as well as a dotted
 number, this parameter is usually used in conjunction
 with 'RANGE_MIN' but may also appear without
 (optionally returned, dependent to driver & port
 parameter)

 POSSIBILITES –
 comma separated list of possible values for this
 parameter, character strings are encapsulated into
 apostrophes
 (optionally returned, dependent to device & port
 parameter)

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET MIDI_INPUT_PORT_PARAMETER INFO 0 0 alsa_seq_bindings”
 S: “DESCRIPTION: bindings to other Alsa sequencer clients”
 “TYPE: STRING”
 “FIX: false”
 “MULTIPLICITY: true”
 “POSSIBILITES: '64:0','68:0','68:1'”
 “.”

4.3.12 Changing settings of MIDI input ports

Schoenebeck Expires - August 2004 [Page 31]

LinuxSampler Control Protocol June 2004

Use the following command to alter a specific setting of a MIDI
input port:

 SET MIDI_INPUT_PORT PARAMETER <device-id> <port> <key>=<value>

 Where <device-id> should be replaced by the numerical ID of the
 MIDI device, <port> by the MIDI port number, <key> by the name of
 the parameter to change and <value> by the new value for this
 parameter.

 Possible Answers:

 “OK” -
 in case setting was successfully changed

 “WRN:<warning-code>:<warning-message>” -
 in case setting was changed successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

 Examples:

 C: “SET MIDI_INPUT_PORT PARAMETER 0 0 alsa_seq_bindings='64:0'”
 S: “OK”

 C: “SET MIDI_INPUT_PORT PARAMETER 0 0 name='My Masterkeyboard'”
 S: “OK”

4.4 Configuring sampler channels

The following commands describe how to add and remove sampler
channels, deploy sampler engines, load instruments and connect
sampler channels to MIDI and audio devices.

4.4.1 Loading an instrument

An instrument file can be loaded and assigned to a sampler channel
by one of the following commands:

LOAD INSTRUMENT [NON_MODAL] '<filename>' <instr-index>
<sampler-channel>

Schoenebeck Expires - August 2004 [Page 32]

LinuxSampler Control Protocol June 2004

 Where <filename> is the name of the instrument file on the
 LinuxSampler instance's host system, <instr-index> the index of the
 instrument in the instrument file and <sampler-channel> is the
 number of the sampler channel the instrument should be assigned to.
 Each sampler channel can only have one instrument.

The difference between regular and NON_MODAL versions of the
command is that the regular command returns OK only after the
instrument has been fully loaded and the channel is ready to be
used while NON_MODAL version returns immediately and a background
process is launched to load the instrument on the channel. GET
CHANNEL INFO command can be used to obtain loading progress from
INSTRUMENT_STATUS field. LOAD command will perform sanity checks
such as making sure that the file could be read and it is of a
proper format and SHOULD return ERR and SHOULD not launch the
background process should any errors be detected at that point.

 Possible Answers:

 “OK” -
 in case the instrument was successfully loaded

 “WRN:<warning-code>:<warning-message>” -
 in case the instrument was loaded successfully, but there
 are noteworthy issue(s) related (e.g. Engine doesn't support
 one or more patch parameters provided by the loaded
 instrument file), providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.2 Loading a sampler engine

A sample engine can be deployed and assigned to a specific sampler
 channel by the following command:

 LOAD ENGINE <engine-name> <sampler-channel>

 Where <engine-name> is usually the C++ class name of the engine
 implementation and <sampler-channel> the sampler channel the
 deployed engine should be assigned to. Even if the respective
 sampler channel has already a deployed engine with that engine
 name, a new engine instance will be assigned to the sampler channel.

 Possible Answers:

Schoenebeck Expires - August 2004 [Page 33]

LinuxSampler Control Protocol June 2004

 “OK” -
 in case the engine was successfully deployed

 “WRN:<warning-code>:<warning-message>” -
 in case the engine was deployed successfully, but there
 are noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.3 Getting all created sampler channel count

The number of sampler channels can change on runtime. To get the
 current amount of sampler channels, the front-end can send the
 following command:

 GET CHANNELS

 Possible Answers:

 LinuxSampler will answer by returning the current number of
 sampler channels.

 Example:

 C: “GET CHANNELS”
 S: “12”

4.4.4 Getting all created sampler channel list

The number of sampler channels can change on runtime. To get the
 current list of sampler channels, the front-end can send the
 following command:

 LIST CHANNELS

 Possible Answers:

 LinuxSampler will answer by returning a comma separated list
 with all sampler channels numerical IDs.

 Example:

 C: “LIST CHANNELS”
 S: “0,1,2,3,4,5,6,9,10,11,15,20”

Schoenebeck Expires - August 2004 [Page 34]

LinuxSampler Control Protocol June 2004

4.4.5 Adding a new sampler channel

A new sampler channel can be added to the end of the sampler
 channel list by sending the following command:

 ADD CHANNEL

 This will increment the sampler channel count by one and the new
 sampler channel will be appended to the end of the sampler channel
 list. The front-end should send the respective, related commands
 right after to e.g. load an engine, load an instrument and setting
 input, output method and eventually other commands to initialize
 the new channel. The front-end should use the sampler channel
 returned by the answer of this command to perform the previously
 recommended commands, to avoid race conditions e.g. with other
 front-ends that might also have sent an “ADD CHANNEL” command.

 Possible Answers:

 “OK[<sampler-channel>]” -
 in case a new sampler channel could be added, where
 <sampler-channel> reflects the channel number of the new
 created sampler channel which should the be used to set up
 the sampler channel by sending subsequent intialization
 commands

 “WRN:<warning-code>:<warning-message>” -
 in case a new channel was added successfully, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.6 Removing a sampler channel

A sampler channel can be removed by sending the following command:

 REMOVE CHANNEL <sampler-channel>

 This will decrement the sampler channel count by one and also
 decrement the channel numbers of all subsequent sampler channels by
 one.

 Possible Answers:

Schoenebeck Expires - August 2004 [Page 35]

LinuxSampler Control Protocol June 2004

 “OK” -
 in case the given sampler channel could be removed

 “WRN:<warning-code>:<warning-message>” -
 in case the given channel was removed, but there are
 noteworthy issue(s) related, providing an appropriate
 warning code and warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.7 Getting all available engines

The front-end can ask for all available engines by sending the
 following command:

 GET AVAILABLE_ENGINES

 Possible Answers:

 LinuxSampler will answer by sending a comma separated character
 string of the engines' C++ class names.

 Example:

 C: “GET AVAILABLE_ENGINES”
 S: “GigEngine,AkaiEngine,DLSEngine,JoesCustomEngine”

4.4.8 Getting information about an engine

The front-end can ask for information about a specific engine by
 sending the following command:

 GET ENGINE INFO <engine-name>

 Where <engine-name> is usually the C++ class name of the engine
 implementation.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the information category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that info category. At the moment
 the following categories are defined:

Schoenebeck Expires - August 2004 [Page 36]

LinuxSampler Control Protocol June 2004

 DESCRIPTION –
 arbitrary description text about the engine

 VERSION -
 arbitrary character string regarding the engine's
 version

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET ENGINE INFO JoesCustomEngine”
 S: “DESCRIPTION: this is Joe's custom sampler engine”
 “VERSION: testing-1.0”
 “.”

4.4.9 Getting sampler channel information

The front-end can ask for the current settings of a sampler channel
 by sending the following command:

 GET CHANNEL INFO <sampler-channel>

 Where <sampler-channel> is the sampler channel number the front-end
 is interested in.

 Possible Answers:

 LinuxSampler will answer by sending a <CRLF> separated list.
 Each answer line begins with the settings category name
 followed by a colon and then a space character <SP> and finally
 the info character string to that setting category. At the
 moment the following categories are defined:

 ENGINE_NAME –
 name of the engine that is deployed on the sampler
 channel, “NONE” if there's no engine deployed yet for
 this sampler channel

 AUDIO_OUTPUT_DEVICE –
 numerical ID of the audio output device which is
 currently connected to this sampler channel to output
 the audio signal, “NONE” if there's no device
 connected to this sampler channel

 AUDIO_OUTPUT_CHANNELS –
 number of output channels the sampler channel offers
 (dependent to used sampler engine and loaded instrument)

Schoenebeck Expires - August 2004 [Page 37]

LinuxSampler Control Protocol June 2004

 AUDIO_OUTPUT_ROUTING -
 comma separated list which reflects to which audio
 channel of the selected audio output device each
 sampler output channel is routed to, e.g. “0,3” would
 mean the engine's output channel 0 is routed to channel
 0 of the audio output device and the engine's output
 channel 1 is routed to the channel 3 of the audio
 output device

 INSTRUMENT_FILE –
 the file name of the loaded instrument, “<NONE>” if
 there's no instrument yet loaded for this sampler
 channel

 INSTRUMENT_NR -
 the instrument index number of the loaded instrument

 INSTRUMENT_STATUS -
integer values 0 to 100 indicating loading progress
percentage for the instrument. Negative value indicates
a loading exception. Value of 100 indicates that the
instrument is fully loaded.

 MIDI_INPUT_DEVICE –
 numerical ID of the MIDI input device which is
 currently connected to this sampler channel to deliver
 MIDI input commands, “NONE” if there's no device
 connected to this sampler channel

 MIDI_INPUT_PORT –
 port number of the MIDI input device

 MIDI_INPUT_CHANNEL –
 the MIDI input channel number this sampler channel
 should listen to or “ALL” to listen on all MIDI channels

 VOLUME –
 optionally dotted number for the channel volume factor
 (where a value < 1.0 means attenuation and a value >
 1.0 means amplification)

 The mentioned fields above don't have to be in particular order.

 Example:

 C: “GET CHANNEL INFO 34”
 S: “ENGINE_NAME: GigEngine”
 “VOLUME: 1.0”

Schoenebeck Expires - August 2004 [Page 38]

LinuxSampler Control Protocol June 2004

 “AUDIO_OUTPUT_DEVICE: 0”
 “AUDIO_OUTPUT_CHANNELS: 2”
 “AUDIO_OUTPUT_ROUTING: 0,1”
 “INSTRUMENT_FILE: '/home/joe/FazioliPiano.gig'”
 “INSTRUMENT_NR: 0”
 “INSTRUMENT_STATUS: 100”
 “MIDI_INPUT_DEVICE: 0”
 “MIDI_INPUT_PORT: 0“
 “MIDI_INPUT_CHANNEL: 5”
 “.”

4.4.10 Current number of active voices

The front-end can ask for the current number of active voices on a
 sampler channel by sending the following command:

 GET CHANNEL VOICE_COUNT <sampler-channel>

 Where <sampler-channel> is the sampler channel number the front-end
 is interested in.

 Possible Answers:

 LinuxSampler will answer by returning the number of active
 voices on that channel.

4.4.11 Current number of active disk streams

The front-end can ask for the current number of active disk streams
 on a sampler channel by sending the following command:

 GET CHANNEL STREAM_COUNT <sampler-channel>

 Where <sampler-channel> is the sampler channel number the front-end
 is interested in.

 Possible Answers:

 LinuxSampler will answer by returning the number of active
 disk streams on that channel in case the engine supports disk
 streaming, if the engine doesn't support disk streaming it will
 return “NA” for not available.

4.4.12 Current fill state of disk stream buffers

The front-end can ask for the current fill state of all disk

Schoenebeck Expires - August 2004 [Page 39]

LinuxSampler Control Protocol June 2004

streams
 on a sampler channel by sending the following command:

 GET CHANNEL BUFFER_FILL BYTES <sampler-channel>

 to get the fill state in bytes or

 GET CHANNEL BUFFER_FILL PERCENTAGE <sampler-channel>

 to get the fill state in percent, where <sampler-channel> is the
 sampler channel number the front-end is interested in.

 Possible Answers:

 LinuxSampler will either answer by returning a comma separated
 string with the fill state of all disk stream buffers on that
 channel or an empty line if there are no active disk streams or
 “NA” for *not available* in case the engine which is deployed
 doesn't support disk streaming. Each entry in the answer list
 will begin with the stream's ID in brackets followed by the
 numerical representation of the fill size (either in bytes or
 percentage). Note: due to efficiency reasons the fill states in
 the response are not in particular order, thus the front-end has
 to sort them by itself if necessary.

 Example:

 C: “GET CHANNEL BUFFER_FILL BYTES 4”
 S: “[115]420500,[116]510300,[75]110000,[120]230700”

 C: “GET CHANNEL BUFFER_FILL PERCENTAGE 4”
 S: “[115]90%,[116]98%,[75]40%,[120]62%”

 C: “GET CHANNEL BUFFER_FILL PERCENTAGE 4”
 S: “”

4.4.13 Setting audio output device

The front-end can set the audio output device on a specific sampler
 channel by sending the following command:

 SET CHANNEL AUDIO_OUTPUT_DEVICE <sampler-channel> <audio-device-id>

 Where <audio-device-id> is the numerical ID of the audio output
 device and <sampler-channel> is the respective sampler channel
 number.

 Possible Answers:

Schoenebeck Expires - August 2004 [Page 40]

LinuxSampler Control Protocol June 2004

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -
 if audio output device was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.14 Setting audio output channel

The front-end can alter the audio output channel on a specific
 sampler channel by sending the following command:

 SET CHANNEL AUDIO_OUTPUT_CHANNEL <sampler-chan> <audio-out> <audio-
in>

 Where <sampler-chan> is the sampler channel, <audioout> is the
 sampler channel's audio output channel which should be
 rerouted and <audio-in> the audio channel of the selected audio
 output device where <audio-out> should be routed to.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -
 if audio output channel was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.15 Setting MIDI input device

The front-end can set the MIDI input device on a specific sampler
 channel by sending the following command:

 SET CHANNEL MIDI_INPUT_DEVICE <sampler-channel> <midi-device-id>

Schoenebeck Expires - August 2004 [Page 41]

LinuxSampler Control Protocol June 2004

 Where <midi-device-id> is the numerical ID of the MIDI input
 device and <sampler-channel> is the respective sampler channel
 number.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -
 if MIDI input device was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.16 Setting MIDI input port

The front-end can alter the input MIDI port on a specific sampler
 channel by sending the following command:

 SET CHANNEL MIDI_INPUT_PORT <sampler-channel> <midi-input-port>

 Where <midi-input-port> is a MIDI input port number of the
 MIDI input device connected to the sampler channel given by
 <sampler-channel>.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -
 if MIDI input port was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.17 Setting MIDI input channel

The front-end can alter the MIDI channel a sampler channel should
 listen to by sending the following command:

Schoenebeck Expires - August 2004 [Page 42]

LinuxSampler Control Protocol June 2004

 SET CHANNEL MIDI_INPUT_CHANNEL <sampler-channel> <midi-input-chan>

 Where <midi-input-chan> is the new MIDI input channel where
 <sampler-channel> should listen to or “ALL” to listen on all 16 MIDI
 channels.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -
 if MIDI input channel was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.4.18 Setting channel volume

The front-end can alter the volume of a sampler channel by sending
 the following command:

 SET CHANNEL VOLUME <sampler-channel> <volume>

 Where <volume> is an optionally dotted positive number (a value
 smaller than 1.0 means attenutation, whereas a value greater than
 1.0 means amplification) and <sampler-channel> defines the sampler
 channel where this volume factor should be set.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -
 if channel volume was set, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

Schoenebeck Expires - August 2004 [Page 43]

LinuxSampler Control Protocol June 2004

4.4.19 Resetting a sampler channel

The front-end can reset a particular sampler channel by sending the
following command:

 RESET CHANNEL <sampler-channel>

 Where <sampler-channel> defines the sampler channel to be reset.
 This will cause the engine on that sampler channel, its voices and
 eventually disk streams and all control and status variables to be
 reset.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -
 if channel was reset, but there are noteworthy issue(s)
 related, providing an appropriate warning code and warning
 message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.5 Controlling connection

The following commands are used to control the connection to
LinuxSampler.

4.5.1 Register front-end for receiving event messages

The front-end can register itself to the LinuxSampler application to
 be informed about noteworthy events by sending this command:

 SUBSCRIBE <event-id>

 where <event-id> will be replaced by the respective event that
 client wants to subscribe to.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -

Schoenebeck Expires - August 2004 [Page 44]

LinuxSampler Control Protocol June 2004

 if registration succeeded, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.5.2 Unregister front-end for not receiving UDP event messages anymore

The front-end can unregister itself if it doesn't want to receive
event messages anymore by sending the following command:

 UNSUBSCRIBE <event-id>

 Where <event-id> will be replaced by the respective event that
client doesn't want to receive anymore.

 Possible Answers:

 “OK” -
 on success

 “WRN:<warning-code>:<warning-message>” -
 if un-registration succeeded, but there are noteworthy
 issue(s) related, providing an appropriate warning code and
 warning message

 “ERR:<error-code>:<error-message>” -
 in case it failed, providing an appropriate error code and
 error message

4.5.3 Enable or disable echo of commands

To enable or disable back sending of commands to the client the
following command can be used:

 SET ECHO <value>

 Where <value> should be replaced either by “1” to enable echo mode
 or “0” to disable echo mode. When echo mode is enabled, all
 commands send to LinuxSampler will be immediately send back and
 after this echo the actual response to the command will be
 returned. Echo mode will only be altered for the client connection
 that issued the “SET ECHO” command, not globally for all client
 connections.

Schoenebeck Expires - August 2004 [Page 45]

LinuxSampler Control Protocol June 2004

 Possible Answers:

 “OK” - always returned

4.5.4 Close client connection

The client can close its network connection to LinuxSampler by
sending the following command:

 QUIT

 This is probably more interesting for manual telnet connections to
 LinuxSampler than really useful for a front-end implementation.

5. Command Syntax

The following are the LSCP (LinuxSampler control protocol) commands:

 ADD <SP> CHANNEL

 CREATE <create-instruction>

 DESTROY <destroy-instruction>

 GET <SP> <get-instruction>

 LIST <SP> <list-instruction>

 LOAD <SP> <load-instruction>

 REMOVE <SP> CHANNEL <SP> <sampler-channel>

 SET <SP> <set-instruction>

 RESET <SP> CHANNEL <SP> <sampler-channel>

 SUBSCRIBE <SP> <event-id>

 UNSUBSCRIBE <SP> <event-id>

 QUIT

The syntax of the above argument fields is given below using Backus-
Naur Form (BNF as described in RFC-2234 [2]) where applicable.

Schoenebeck Expires - August 2004 [Page 46]

LinuxSampler Control Protocol June 2004

<create-instruction> ::=
 AUDIO_OUTPUT_DEVICE <SP> <audio-output-driver> <SP> <param-list> |
 MIDI_INPUT_DEVICE <SP> <midi-input-driver> <SP> <param-list>

<destroy-instruction> ::=
 AUDIO_OUTPUT_DEVICE <SP> <device-id> |
 MIDI_INPUT_DEVICE <SP> <device-id>

<set-instruction> ::=
 CHANNEL <SP> <set-chan-instruction> |
 AUDIO_OUTPUT_DEVICE_PARAMETER <SP> <device-id> <SP>
 <key> <SP> <value> |
 AUDIO_OUTPUT_DEVICE_PARAMETER <SP> <device-id> <SP>
 <key> = <value>
 AUDIO_OUTPUT_CHANNEL_PARAMETER <SP> <device-id> <SP>
 <audio-chan> <SP> <key> <SP> <value> |
 AUDIO_OUTPUT_CHANNEL_PARAMETER <SP> <device-id> <SP>
 <audio-chan> <SP> <key> = <value> |
 MIDI_INPUT_DEVICE_PARAMETER <SP> <device-id> <SP> <key>
 <SP> <value> |
 MIDI_INPUT_DEVICE_PARAMETER <SP> <device-id> <SP> <key>
 = <value> |
 MIDI_INPUT_PORT <SP> PARAMETER <SP> <device-id> <SP>
 <port> <SP> <key> <SP> <value> |
 MIDI_INPUT_PORT <SP> PARAMETER <SP> <device-id> <SP>
 <port> <SP> <key> = <value>
 ECHO <SP> <bool>

<get-instruction> ::=
 AUDIO_OUTPUT_DEVICES |
 AUDIO_OUTPUT_DEVICE <SP> INFO <SP> <device-id> |
 AUDIO_OUTPUT_CHANNEL <SP> INFO <SP> <device-id> <SP>
 <audio-chan> |
 AUDIO_OUTPUT_CHANNEL_PARAMETER <SP> INFO <SP>
 <device-id> <SP> <audio-chan> <SP> <parameter> |
 AVAILABLE_AUDIO_OUTPUT_DRIVERS |
 AVAILABLE_MIDI_INPUT_DRIVERS |
 MIDI_INPUT_DEVICES |
 MIDI_INPUT_DEVICE <SP> INFO <SP> <device-id> |
 MIDI_INPUT_DRIVER <SP> INFO <SP> <midi-input-driver> |
 MIDI_INPUT_DRIVER_PARAMETER <SP> INFO <SP>
 <midi-input-driver> <SP> <param> <SP>
 <dependency-list> |
 MIDI_INPUT_PORT <SP> INFO <SP> <device-id> <SP>
 <midi-port> |
 MIDI_INPUT_PORT_PARAMETER <SP> INFO <SP> <device-id>
 <SP> <port> <SP> <param> |
 AVAILABLE_ENGINES |
 CHANNELS |

Schoenebeck Expires - August 2004 [Page 47]

LinuxSampler Control Protocol June 2004

 CHANNEL <SP> INFO <SP> <sampler-channel> |
 CHANNEL <SP> BUFFER_FILL <SP> <buffer-size-type> <SP>
 <sampler-channel> |
 CHANNEL <SP> STREAM_COUNT <SP> <sampler-channel> |
 CHANNEL <SP> VOICE_COUNT <SP> <sampler-channel> |
 ENGINE <SP> INFO <SP> <engine-name>

<list-instruction> ::=
 AUDIO_OUTPUT_DEVICES |
 MIDI_INPUT_DEVICES |
 CHANNELS

<load-instruction> ::=
 INSTRUMENT <SP> <load-instr-args> |
 INSTRUMENT <SP> NON_MODAL <SP> <load-instr-args> |
 ENGINE <SP> <load-engine-args>

<sampler-channel> ::= <number>

<set-chan-instruction> ::=
 AUDIO_OUTPUT_DEVICE <SP> <sampler-channel> <SP>
 <audio-device-id> |
 AUDIO_OUTPUT_CHANNEL <SP> <sampler-channel> <SP>
 <audio-output-channel> <SP> <audio-output-channel> |
 MIDI_INPUT_DEVICE <SP> <sampler-channel> <SP>
 <midi-device-id> |
 MIDI_INPUT_PORT <SP> <sampler-channel> <SP>
 <midi-input-port> |
 MIDI_INPUT_CHANNEL <SP> <sampler-channel> <SP>
 <midi-input-channel> |
 VOLUME <SP> <sampler-channel> <SP> <volume>

<device-id> ::= <number>

<udp-port> ::= <number>

<session-id> ::= <string>

<buffer-size-type> ::= BYTES | PERCENTAGE

<engine-name> ::= <cpp-classname>

<load-instr-args> ::=
 <filename> <SP> <instr-index> <SP> <sampler-channel>

<load-engine-args> ::= <engine-name> <SP> <sampler-channel>

<audio-output-channel> ::= <number>

Schoenebeck Expires - August 2004 [Page 48]

LinuxSampler Control Protocol June 2004

<audio-output-driver> ::= Alsa | Jack

<midi-input-port> ::= <string>

<midi-input-channel> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
 11 | 12 | 13| 14 | 15 | 16 | ALL

<midi-input-type> ::= Alsa

<volume> ::= <dotnum>

<cpp-classname> ::= class name as defined by the C++ programming
 language

<filename> ::= <string>

<dependency-list> ::= <parameter-list>

<parameter-list> ::= <epsilon> |
 <string> = ' <string> ' |
 <string> = <number> |
 <string> = <dotnum> |
 <string> = <bool> |
 <string> = ' <string> ' <SP> <dependency-list>
 <string> = <number> <SP> <dependency-list>
 <string> = <dotnum> <SP> <dependency-list>
 <string> = <bool> <SP> <dependency-list>

<string> ::= <char> | <char> <string>

<char> ::= <c> | "\" <x>

<c> ::= any one of the 128 ASCII characters, but not any
 <special> or <SP>

<special> ::= "<" | ">" | ";" | ":" | "&" | "{" | "}" | the control
 characters (ASCII codes 0 through 31 inclusive and 127)

<dotnum> ::= <snum> "." <number>

<number> ::= <d> | <d> <number>

<d> ::= any one of the ten digits 0 through 9

<snum> ::= arbitrary number of digits representing a decimal
 integer value in the range including 0 to infinity

<bool> ::= true | 1 | false | 0

Schoenebeck Expires - August 2004 [Page 49]

LinuxSampler Control Protocol June 2004

<CRLF> ::= <CR> <LF>

<CR> ::= the carriage return character (ASCII code 13)

<LF> ::= the line feed character (ASCII code 10)

<SP> ::= the space character (ASCII code 32)

<x> ::= any one of the 128 ASCII characters (no exceptions)

<epsilon> ::= empty input

Note that command lines have to be <CRLF> terminated, thus the total
message set / command set is defined as:

<input> ::= <epsilon> | <input> <line>

<line> ::= <CRLF> | <command> <CRLF>

where <command> is one of the command lines as defined in the
beginning of this section.

6. Events

This chapter will describe all currently defined events supported
by LinuxSampler.

6.1 Number of sampler channels changed

Client may want to be notified when the total number of channels on
the back-end changes by issuing the following command:
 SUBSCRIBE CHANNELS

Server will start sending the following notification messages:

 “NOTIFY:CHANNELS:<channels>”

 where <channels> will be replaced by the new number of sampler
 channels.

6.2 Number of active voices changed

Client may want to be notified when the number of voices on the

Schoenebeck Expires - August 2004 [Page 50]

LinuxSampler Control Protocol June 2004

back-end changes by issuing the following command:
 SUBSCRIBE VOICE_COUNT

Server will start sending the following notification messages:

 “NOTIFY:VOICE_COUNT:<sampler-channel> <voices>”

 where <sampler-channel> will be replaced by the sampler channel the
 voice count change occurred and <voices> by the new number of
 active voices on that channel.

6.3 Number of active disk streams changed

Client may want to be notified when the number of streams on the
back-end changes by issuing the following command:
 SUBSCRIBE STREAM_COUNT

Server will start sending the following notification messages:

 “NOTIFY:STREAM_COUNT:<sampler-channel> <streams>”

 where <sampler-channel> will be replaced by the sampler channel the
 stream count change occurred and <streams> by the new number of
 active disk streams on that channel.

6.4 Disk stream buffer fill state changed

Client may want to be notified when the number of streams on the
back-end changes by issuing the following command:
 SUBSCRIBE BUFFER_FILL

Server will start sending the following notification messages:

 “NOTIFY:BUFFER_FILL:<sampler-channel> <fill data>”

 where <sampler-channel> will be replaced by the sampler channel the
buffer fill state change occurred and <fill data> will be replaced
by the buffer fill data for this channel as described in 4.4.12 as
if the GET CHANNEL BUFFER_FILL PERCENTAGE was issued on this
channel.

6.5 Channel information changed

Client may want to be notified when changes were made to sampler
channels on the back-end changes by issuing the following command:
 SUBSCRIBE INFO

Schoenebeck Expires - August 2004 [Page 51]

LinuxSampler Control Protocol June 2004

Server will start sending the following notification messages:
 “NOTIFY:INFO:<sampler-channel>”

 where <sampler-channel> will be replaced by the sampler channel the
 channel info change occurred. The front-end will have to send

the respective command to actually get the channel info. Because
these messages will be triggered by LSCP commands issued by other
clients rather than real time events happening on the server, it is
believed that an empty notification message is sufficient here.

6.6 Miscellaneous and debugging events

Client may want to be notified of miscellaneous and debugging
events occurring at the server by issuing the following command:
 SUBSCRIBE MISCELLANEOUS

Server will start sending the following notification messages:
 “NOTIFY:MISCELLANEOUS:<string>”

where <string> will be replaced by whatever data server wants to
send to the client. Client MAY display this data to the user AS IS
to facilitate debugging.

Schoenebeck Expires - August 2004 [Page 52]

LinuxSampler Control Protocol June 2004

Security Considerations

As there is so far no method of authentication and authorization
defined and so not required for a client applications to succeed to
connect, running LinuxSampler might be a security risk for the host
system the LinuxSampler instance is running on.

Acknowledgments

This document has benefited greatly from the comments of the
following people, discussed on the LinuxSampler developer's mailing
list:

Rui Nuno Capela
Vladimir Senkov
Mark Knecht

Author's Addresses

Christian Schoenebeck
Interessengemeinschaft Software Engineering e. V.
Max-Planck-Str. 39
74081 Heilbronn
Germany
Email: schoenebeck at software minus engineering dot org

Schoenebeck Expires - August 2004 [Page 53]

1 Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997

2 Crocker, D. and Overell, P.(Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997

