Gigasampler’'s Velocity Response Curves

Christian Schoenebeck <schoenebeck@software-engineering.org>

November 20, 2004

The keystroke velocity of a triggered key on the keyboard is essential for the volume
of the resulting tone. For this a total and mostly injective function f € V' — A is used.
In case of MIDI the set of velocity values is V' = {0,1,...,127} and the result set of
volume attenuation factors is A C {a € R |0 < a < 1}. This function is called Velocity
Response Curve. In contrast to the past where one simple and constant function was
used, today’s synthesizers and samplers offer a variety of possible functions to be able
to provide a more realistic feeling while playing a simulated, natural instrument and to
constrain synthetic sounds in their dynamic range.

The Gigasampler format offers three function types called nonlinear, linear and special.
To increase the possibilities for a sound programmer, these functions were not realized
by the Gigasampler developers as simple monadic functions but as three figure functions
fe(V,D,S) — A, where V =1{0,1,...,127} is as always the velocity of the keystroke,
D =1{0,1,2,3,4} is the so called Response Depth and S = {0,1,...,127} is the so called
Curve Scaling. The first argument can of course only be determined at runtime, the other
two arguments are already constantly defined by the instrument patch file, thus is already
given by the sound programmer. The resulting Velocity Response Curves can differ quite
a lot between various Gigasampler instruments. Of course there is no specification of
Gigasampler’s velocity functions publicly available, so we had to approximate them.
Figure 1 shows some measurements made by Mark Knecht, which represent snapshots of
the original velocity curves of Gigasampler.

For approximation I decided to use a square function of form:
f(v,d, s) = c1v® + ead® + 35 + cqv + c5d + g5 + ¢7 (1)

which reduces the search of an appropriate function to a Linear Least Squares Error
Problem, which can be solved by using the following approach:

AT Az = ATh

response depth— 4 4

curve scaling—

linear nonlinear

special

4 2 2 2 0 0 0 0
0 0 64 127 0 20 64 127
NLdow-0.L NL-medium-0.L || HL-medium-G4.L || HLmedium-127.L] | HL-high-0.L NL-high-20.L ML-high-G4. L HL-high-127.L

64 127
MNL-ow-E4. L l NLdow-127.L |

L-low-G4. L L-low-127.L

L-medium-Gi4.L

L-medium-0. L L-medium-127.L

L-highe0l.L

L-high-64.L

L-high-127.L

Special-low-0.L

pecial-medium-0|| Special-medium- || Special-medium-1| | Special-high-0.L Special-high-20.L) Special-G4.L

I
Speciaklon-BaL |

Special-high-127.

Figure 1: measured Velocity Response Curves of Gigasampler

where
n
= Y2
b=
Yn
with y1,92,...,yn as ordinates, thus the measured snapshot values of the original curves.

In our case, that is, with the chosen function (1), the sought coefficient vector is

The matrix A is calculated by inserting the abscissae, that is by insering the respective
function arguments vi,dy, s1,v2,ds, S2,. .., Un, dn, Sy, used by the measurement of the
snapshots, into our chosen function form (1):

V1 d12 S1 V1 dl S1 1
1)22 d22 822 () d2 S92 1
A= . : :
va? dn? sp? v, dy sn 1

The matrix A7 is the transposed matrix of A. With AT A we obtain the square matrix
A',in our case A’ € R™7. With ATb we obtain the vector &’ with same dimension than
A’ has rows and columns, thus in our case ' € R7. Now the linear equation system given
by

Ae=1V

response depth—

curve scaling—

4 4 4
0 64 127

nonlinear

YT IV VIV V

linear

special

YAV AN

Figure 2: approximated Velocity Response Curves (compare with fig. 1)

is not overdetermined anymore and as we have inserted appropriate measurement values
of course, this means that A’ is regular and the linear equation system has thus an unam-
biguous, granted solution ¢ which can be calculated e.g. by using the Gauss Elimination
Algorithm. This can be conveniently done e.g. by using the computer programs Maxima
or Maple. And here are the calculated approximated functions as of today (November
20, 2004) in use by LinuxSampler’s gig: :Engine (or more specific; contained in 1ibgig):

The approximated square function for nonlinear is:

fatin(v,d,s) = 0.0005143775427v% + 0.05318278732d> — 0.0003560390502s% +
0.04683631221v — 0.9484386143d + 0.08030068910s —
0.1666235937

The approximated square function for special is:

fspec(v,d,8) = 0.000057945513470% + 0.008361491099d> — 0.000004303475615s>
0.002085522765v + 0.01313747345d + 0.0032209168365s
0.1630504921

For comparison with the original measurements in figure 1 the approximated functions
can be seen in figure 2. Note that the linear function in the middle row doesn’t reflect
the function used currently in LinuxSampler, means the linear function shown in figure
2 differs slightly from the one used in libgig currently. Sorry, I was too lazy at the
moment to fix it. ;-)

CU
Christian

l’

